Researchers switch magnetism of individual molecules

Jun 14, 2012
Computer graphic of the spin-crossover molecule that was used for the experiments on gold surface and the STM images of its different magnetic states. Picure copyright: Holger Naggert & Thiruvancheril Gopakumar

Using individual molecules instead of electronic or magnetic memory cells would revolutionise data storage technology, as molecular memories could be thousand-fold smaller. Scientists of Kiel University took a big step towards developing such molecular data storage.

They succeeded in selectively switching on and off the magnetism of individual molecules, so-called spin-crossover complexes, by electrons. The interdisciplinary study is part of the Collaborative Research Centre 677 "Functions by Switching", which is funded by the German Research Foundation (DFG). The results prove that it is technically possible to store information using molecules. The study will be published on June 25th in Angewandte Chemie.

"In principle information may be stored in a single molecule. However, techniques that would make such an approach feasible are becoming available just now", explains project leader Professor Richard Berndt of the Institute of Experimental and Applied Physics at Kiel University. Since the 1980s scientists are able to image individual molecules on surfaces with scanning tunnelling , he continues. Current research aims at controlling the characteristics of single molecules in order to facilitate future technical applications. The Collaborative Research Centre 677 "Functions by Switching" at Kiel University is a large-scale project engaged in such investigations, which aim at constructing molecular machines.

The current study is focused on the magnetism of molecules. Using a Dr. Thiruvancheril Gopakumar, who carried out the study, was able to switch individual molecules between two . Despite their dense packing in a molecular layer he was able to target individual molecules for switching. "Many research groups are striving to control the characteristics of molecules. Gopakumar's studies have taken us one step ahead", says Berndt.

The molecules (spin-crossover complexes) were synthesised at the Institute of Inorganic Chemistry at Kiel University. "Even though it took us a long time to find adequate molecules, we are very pleased with the outcome", states Professor Felix Tuczek, head of the research group "Inorganic Molecular Chemistry". The next step will be to adapt the molecules in a way that would allow scientists to switch them with light instead of electrons and at higher temperatures.

Explore further: Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch

More information: Gopakumar, TG, Matino, F, Naggert, H, Bannwarth, A, Tuczek, F, Berndt R (2012): Electron-induced spin crossover of single molecules in a bilayer on gold, DOI: 10.1002/anie.201201203 http://onlinelibrary.wiley.com/doi/10.1002/ange.201201203/pdf

add to favorites email to friend print save as pdf

Related Stories

Smallest magnetic field sensor in the world developed

Feb 22, 2011

Further development of modern information technology requires computer capacities of increased efficiency at reasonable costs. In the past, integration density of the relevant electronic components was increased ...

Recommended for you

For electronics beyond silicon, a new contender emerges

Sep 16, 2014

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

Sep 16, 2014

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

Sep 16, 2014

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

Study sheds new light on why batteries go bad

Sep 14, 2014

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

User comments : 0