New lithium ion battery strategy offers more energy, longer life cycle

Jun 28, 2012
In situ transmission electron microscopy at EMSL was used to study structural changes in the team’s new anode system. Real-time measurements show silicon nanoparticles inside carbon shells before (left) and after (right) lithiation.

(Phys.org) -- Lithium ion batteries drive devices from electric cars to smartphones. And society is demanding more batteries with more capacity from each battery.

To help meet this demand, EMSL users and researchers put their energy behind a clever new idea that, literally, gives batteries a bit of room to grow. batteries generate electricity by shuttling lithium ions through an electrolyte. In a fully charged battery, lithium ions are stored in a cathode, such as lithium (LiCoO2).

When in use, lithium ions flow from the cathode through an electrolyte into the anode, most commonly made of carbon. During recharging, the ions are pushed back to the cathode where they started. Researchers built upon current technology by making a new type of anode that consists of single silicon nanoparticles inside carbon shells, much like yolks inside eggs.

In this new design, lithium ions flow from the cathode through the electrolyte, diffuse through the carbon shells, and enter the silicon—which can hold ten times as many lithium ions as carbon alone.

By leaving just the right amount of space, the lithiated swell to fill, but not burst, the carbon shell.

The result?

A system that compared to commercial batteries holds seven times more energy and can be discharged and recharged five times as many times before it wears out. Critical to its good performance, the new system forms a stable crust, a solid electrolyte interphase, on the anode that is a consequence of electrolyte decomposition. Moreover, the team’s manufacturing process is affordable, efficient, and can be readily scaled up.

Explore further: Scientists model molecular movement within narrow channels of mesoporous nanoparticles

More information: Nian L, H Wu, MT McDowell, Y Yao, C Wang, and Y Cui. 2012. “A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes.” Nano Letters 12(6):3315-3321. DOI: 10.1021/nl3014814

add to favorites email to friend print save as pdf

Related Stories

New nanostructure for batteries keeps going and going

May 11, 2012

(Phys.org) -- For more than a decade, scientists have tried to improve lithium-based batteries by replacing the graphite in one terminal with silicon, which can store 10 times more charge. But after just a ...

Fluoride shuttle increases storage capacity

Oct 21, 2011

German researchers have developed a new concept for rechargeable batteries. Based on a fluoride shuttle -- the transfer of fluoride anions between the electrodes -- it promises to enhance the storage capacity ...

Recommended for you

Researchers develop world's thinnest electric generator

Oct 15, 2014

Researchers from Columbia Engineering and the Georgia Institute of Technology report today that they have made the first experimental observation of piezoelectricity and the piezotronic effect in an atomically ...

User comments : 0