Lariats: How RNA splicing decisions are made

Jun 17, 2012

Lariats are discarded byproducts of RNA splicing, the process by which genetic instructions for making proteins are assembled. A new study has found hundreds more lariats than ever before, yielding new information about how splicing occurs and how it can lead to disease.

Tiny, transient loops of , detected and studied by the hundreds for the first time at Brown University, are providing new insights into how the body transcribes and splices (or missplices) those transcripts into the instructions needed for making proteins.

The lasso-shaped genetic — they are called lariats — that the Brown team reports studying in the June 17 edition of Nature Structural & Molecular Biology are of gene transcription. Until now scientists had found fewer than 100 lariats, mostly by poring over very small selections of introns, which are sections of genetic code that do not directly code for proteins, but contain important signals that direct the way protein-coding regions are assembled. In the new study, Brown biologists report that they found more than 800 lariats in a publicly available set of billions of RNA reads derived from human tissues.

"We used modern genomic methods, deep sequencers, to detect these rare intermediates of ," said William Fairbrother, associate professor of biology and senior author of the study. "It's the first ever report of these things being discovered at a genome scale in living cells, and it tells us a lot about this step of gene processing."

That specific step is known as splicing. Like film editors splicing together movie scenes, enzymes cut away the introns to assemble exons that instruct a cell's ribosome to make proteins. The body often has a choice of ways and places to make those cuts. Most of what is known about splicing has come from studying these spliced instructions, said Allison Taggart, a graduate student who is lead author of the study. What's been missing is the data hidden in the lariats, which fall apart shortly after being spliced out, but turn out to predict the body's splicing choices.

Modeling splicing

The key information uncovered in the study, Taggart said, is the location of so-called "branchpoints" on the lariats. Physically, the branchpoint is where the lariat closes on itself to form a loop during the first step of splicing, but its position and proximity to possible splice sites, the researchers learned, reliably relate to where splicing will occur.

After studying the sites of these branchpoints and their relationship to splice sites, the researchers created an algorithmic model that could predict splice sites 95.6 percent of the time. The value of the model is not in identifying splice sites — those are already well known, Fairbrother said. Instead, the model's accuracy shows that, with the new data from the lariats, scientists have gained a more general understanding of how the body chooses among alternative splicing sites.

"What it does tell us is sets of rules defining the relationship between branchpoints and the chosen splice sites, which gives clues about how the splicing machinery makes decisions," Taggart said. "Certain branchpoint locations can enforce specific splicing isoforms."

Connections to disease

In addition to ferreting out the mechanisms of alternative splicing, the team also studied the connection between branchpoints and disease. They looked through the Human Gene Mutation Database for disease-causing mutations found in introns and compared their newly found branchpoint sequences to those mutations. They found that many relate specifically to branchpoints.

"We saw a sequence motif that looked exactly like a branchpoint sequence motif," she said. "What this tells us is that these mutations are forming at branchpoints and are leading to disease, presumably through causing aberrant splicing by interfering with lariat formation."

In other words, Fairbrother said, it could well be that a consequence of mutations in branchpoints could be disease.

Explore further: Researchers discover new strategy germs use to invade cells

Related Stories

Will a genetic mutation cause trouble? Ask Spliceman

Mar 05, 2012

In a brief paper in the journal Bioinformatics, Brown University researchers describe a new, freely available Web-based program called Spliceman for predicting whether genetic mutations are likely to disrupt the splicing of mes ...

Research reveals how cells process large genes

Aug 22, 2005

Important messages require accurate transmission. Big genes are especially challenging because they combine many coding segments (exons) that lie between long stretches of non-coding elements (introns). During processing, ...

New mechanism in the regulation of human genes

Jul 14, 2011

Scientists at the Technical University of Munich and the Helmholtz Zentrum Muenchen and along with their colleagues from the European Molecular Biology Laboratory (EMBL) in Heidelberg and the Centre for Genomic Regulation ...

Recommended for you

Researchers discover new strategy germs use to invade cells

21 hours ago

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

22 hours ago

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

Aug 19, 2014

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

Aug 19, 2014

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

User comments : 0