New infrared sensor to revolutionize infrared astronomical imaging

June 22, 2012
Infrared image of the Whirlpool Galaxy (M51) taken by the UH 2.2-meter telescope on Mauna Kea with the new 16-megapixel HAWAII 4RG-15 image sensor. Credit: UH Institute for Astronomy

(Phys.org) -- The University of Hawaii today released the first image obtained using its new 16-megapixel HAWAII 4RG-15 (H4RG-15) image sensor on the UH 2.2-meter (88-inch) telescope on Mauna Kea. This represents a significant step forward in astronomical infrared technology because it is the first time a sensor with anywhere near this many infrared pixels has been trained on the sky.

The image shows the , a 23 million light-years away. “The detail captured all across this extended infrared image really whets our appetite for getting these sensors into cameras at newer, much larger telescopes,” said Dr. Donald N. B. Hall of the UH Institute for Astronomy (IfA), who is principal investigator for the project. “The level of detail revealed by digitally zooming in anywhere in the 16-megapixel image is truly incredible.”

This sensor boasts 16 times the pixel count of an earlier sensor developed by the same team and installed on the Hubble Space Telescope during the astronauts’ last refurbishment mission. It also has four times the pixel count of the largest now in use at telescopes around the world.

While the 16-megapixel count is comparable to commercial imagers in today’s professional digital cameras, infrared sensors used for astronomy must also overcome two formidable technical challenges: The pixels must be sensitive to infrared colors, and they must be big enough to match the huge magnification of the image from a large telescope.

The H4RG-15 development, sponsored by the National Science Foundation, has overcome these challenges through an academic-industrial partnership that draws upon the combined expertise of the IfA, Teledyne Scientific and Imaging, GL Scientific and ON Semiconductor. This latest sensor is the culmination of a 20-year, $15-million effort that has developed five generations of increasingly larger and more powerful infrared sensors in the HAWAII series. The acronym stands for HgCdTe (mercury-cadmium-telluride) Astronomical Wide Area Infrared Imager.

To overcome the first of these major challenges—that the silicon used to fabricate visible imagers is blind to infrared light—infrared-sensitive crystals must be electrically connected to each of the 16 million pixels.

The second challenge, matching the image scale at the focus of a large telescope, means that the pixels must be huge—several hundred times that of the pixels in an iPhone, resulting in one of the largest silicon chips ever produced.  

The HAWAII-4RG-15 pushes the limits of current and foreseeable technology. Larger sensors can likely be constructed only by assembling mosaics of individual arrays, much like tiling a floor. With this technique, 64-megapixel and even gigapixel-class infrared sensors should be possible. GL Scientific, a Hawaii high-tech company founded by former IfA astronomer Dr. Gerard Luppino, is a world leader in mounting the sensors into packages and assembling these into mosaics.

The Infrared-Optical (IO) sensor development program is run out of the IfA’s Hilo facility on the Big Island of Hawaii, where Hall is located. “These detectors are vital to the long-term success of the James Webb Space Telescope and other upcoming space astronomy missions,” he commented. “They also greatly improve the infrared sensitivity of ground-based telescopes such as those on Mauna Kea today and are critical for the coming generation of 30-m-class telescopes, including the Thirty Meter Telescope planned for Mauna Kea.

Explore further: World's Smallest 2.0µm-Pixel MOS Image Sensor

Related Stories

World's Smallest 2.0µm-Pixel MOS Image Sensor

February 9, 2005

Panasonic, the leading brand by which Matsushita Electric Industrial Co., Ltd. is known, today announced the development of the world's smallest image sensor. The revolutionary MOS image sensor has only 2.0 × 2.0 μm ...

Amazing minaturized 'SIDECAR' drives Webb telescope's signal

February 20, 2008

Many technologies have become so advanced that they've been miniaturized to take up less space and weigh less. That's what happened to detector controls and data conversion electronics on the James Webb Space Telescope being ...

Space image: Through the looking glass

June 15, 2011

The NASA logo on Bldg. 703 at the Dryden Aircraft Operations Facility in Palmdale, Calif., is reflected in the 2.5-meter primary mirror of the SOFIA observatory's telescope.

A pinwheel in many colors

May 25, 2012

(Phys.org) -- This image of the Pinwheel Galaxy, or also known as M101, combines data in the infrared, visible, ultraviolet and X-rays from four of NASA's space-based telescopes. This multi-spectral view shows that both young ...

Recommended for you

'Bathtub rings' suggest Titan's dynamic seas

July 28, 2015

Saturn's moon, Titan, is the only object in the Solar System other than Earth known to have liquid on its surface. While most of the lakes are found around the poles, the dry regions near the equator contain signs of evaporated ...

Born-again planetary nebula

July 28, 2015

Beneath the vivid hues of this eye-shaped cloud, named Abell 78, a tale of stellar life and death is unfolding. At the centre of the nebula, a dying star – not unlike our Sun – which shed its outer layers on its way to ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.