Important new method probes dynamics of live microbial colonies in time, space

June 29, 2012
Important new method probes dynamics of live microbial colonies in time, space
Image of EMSL’s nanoDESI setup with a microbial colony grown on an agar surface.

Microbes communicate by excreting simple and complex molecules called metabolites that interact with, talk to, and manipulate their local environment and neighboring cells in a process known as metabolic exchange. Understanding the timing and distribution of these molecular exchanges will be useful for interpreting and potentially manipulating microbial communities for applications ranging from bioremediation to drug discovery.

An exciting and novel technique developed at EMSL now allows researchers to characterize, with high sensitivity and in time and space, the metabolite profile of living microbial communities grown on a soft agar surface. The new method combines EMSL’s nanospray desorption electrospray ionization (nanoDESI) mass spectrometry (MS) and a new bioinformatics technique called molecular networking, which was developed by EMSL users from the University of California, San Diego.

NanoDESI allows for the direct chemical analysis of microbial communities in space and time. Molecular networking is a new way to analyze, organize, and visualize MS data, such as from nanoDESI. During high-resolution MS analysis, thousands of molecules are detected, and structural information is gathered about these molecules by breaking them into fragments. Molecular networking assigns each molecule to a family with shared structural characteristics based on the observed fragmentation patterns—in this case, revealing insights about how communicate.

The combined nanoDESI and molecular networking approach was validated by studying Pseudomonas sp. strain SH-C52, a bacterium that protects plants from fungal infection. It successfully allowed researchers to detect and partially characterize the antifungal Pseudomonas agent thanamycin, a lipopeptide that is undetectable using traditional methods. The sensitivity afforded by nanoDESI coupled with molecular networking along with the potential for the broad implementation of the combined technique provide a significant gain toward characterizing complex microbial interactions by directly observing metabolic exchange processes—a long-sought breakthrough in the microbiology field.

Explore further: Scientists visualize how bacteria talk to one another

Related Stories

Scientists visualize how bacteria talk to one another

November 8, 2009

Using imaging mass spectrometry, researchers at the University of California, San Diego have developed tools that will enable scientists to visualize how different cell populations of cells communicate. Their study shows ...

Recommended for you

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...

How cells 'climb' to build fruit fly tracheas

November 25, 2015

Fruit fly windpipes are much more like human blood vessels than the entryway to human lungs. To create that intricate network, fly embryonic cells must sprout "fingers" and crawl into place. Now researchers at The Johns Hopkins ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.