Important new method probes dynamics of live microbial colonies in time, space

Jun 29, 2012
Important new method probes dynamics of live microbial colonies in time, space
Image of EMSL’s nanoDESI setup with a microbial colony grown on an agar surface.

Microbes communicate by excreting simple and complex molecules called metabolites that interact with, talk to, and manipulate their local environment and neighboring cells in a process known as metabolic exchange. Understanding the timing and distribution of these molecular exchanges will be useful for interpreting and potentially manipulating microbial communities for applications ranging from bioremediation to drug discovery.

An exciting and novel technique developed at EMSL now allows researchers to characterize, with high sensitivity and in time and space, the metabolite profile of living microbial communities grown on a soft agar surface. The new method combines EMSL’s nanospray desorption electrospray ionization (nanoDESI) mass spectrometry (MS) and a new bioinformatics technique called molecular networking, which was developed by EMSL users from the University of California, San Diego.

NanoDESI allows for the direct chemical analysis of microbial communities in space and time. Molecular networking is a new way to analyze, organize, and visualize MS data, such as from nanoDESI. During high-resolution MS analysis, thousands of molecules are detected, and structural information is gathered about these molecules by breaking them into fragments. Molecular networking assigns each molecule to a family with shared structural characteristics based on the observed fragmentation patterns—in this case, revealing insights about how communicate.

The combined nanoDESI and molecular networking approach was validated by studying Pseudomonas sp. strain SH-C52, a bacterium that protects plants from fungal infection. It successfully allowed researchers to detect and partially characterize the antifungal Pseudomonas agent thanamycin, a lipopeptide that is undetectable using traditional methods. The sensitivity afforded by nanoDESI coupled with molecular networking along with the potential for the broad implementation of the combined technique provide a significant gain toward characterizing complex microbial interactions by directly observing metabolic exchange processes—a long-sought breakthrough in the microbiology field.

Explore further: Animals steal defenses from bacteria: Microbe toxin genes have jumped to ticks, mites and other animals

add to favorites email to friend print save as pdf

Related Stories

Scientists visualize how bacteria talk to one another

Nov 08, 2009

Using imaging mass spectrometry, researchers at the University of California, San Diego have developed tools that will enable scientists to visualize how different cell populations of cells communicate. Their ...

Recommended for you

New method for quickly determining antibiotic resistance

6 hours ago

Scientists from Uppsala University, the Science for Life Laboratory (SciLifeLab) in Stockholm and Uppsala University Hospital have developed a new method of rapidly identifying which bacteria are causing an infection and ...

Cohesin molecule safeguards cell division

Nov 21, 2014

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Nail stem cells prove more versatile than press ons

Nov 21, 2014

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the r ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.