High-contrast, high-resolution CT scans now possible at reduced dose

June 4, 2012
This is an aerial view of the ESRF where the new X-ray imaging technique was developed in the building in the foreground, using intensive beams of synchrotron radiation. Credit: ESRF

Scientists have developed an X-ray imaging method that could drastically improve the contrast of computed tomography (CT) scans whilst reducing the radiation dose deposited during the scan. The new method is based on the combination of the high contrast obtained by an X-ray technique known as grating interferometry with the three-dimensional capabilities of CT. It is also compatible with clinical CT apparatus, where an X-ray source and detector rotate continuously around the patient during the scan. The results are published in Proceedings of the National Academy of Sciences (PNAS) dated June 4-8, 2012.

The conventional way of producing X-ray images is to shine an X-ray beam on the investigated object and measure the transmitted behind it. This is the method that W.C. Röntgen developed in 1895, just after he discovered X-rays. To the present day, it is commonly used, for example, in hospitals and for security screening at airports. However, since this technique relies on variations in how the different constituents of an object absorb X-rays, it also has severe limitations notably in medical X-raying where cancerous and healthy soft tissue often do not show enough contrast to be clearly distinguished.

In the past years, a lot of effort has therefore been put into the development of new X-ray imaging techniques that do not rely solely on absorption but increase the contrast through the observation of other types of interaction between X-rays and matter.

This is a tomographic imaging of a wasp in amber: The dark-field sagittal slice of a wasp in amber clearly shows the insects wings. Image data collected at ESRF beamline ID19. Credit: Credit I. Zanette et al., PNAS 2012: doi: 10.1073/pnas.1117861109. Reproduced with permission from Proceedings of the National Academy of Sciences USA.

Of these new methods, a very promising one is the so-called "X-ray grating interferometry", in which microstructures, gratings developed at PSI and KIT, serve as optical elements for X-rays. The setup for this contrast-enhancing technique is simple and compact, and it can be combined with computed tomography (CT) X-ray scanners to yield virtual slice images and full 3D information of an object. Over the past decade, grating interferometry has been constantly improved, with a focus on medical applications.

The team of scientists has now made an important step towards clinical implementation of this technique – a new measurement protocol called "sliding window" technique. "We wanted to shorten the gap between the potential offered by this extremely powerful technique and its application in the biomedical field. Our sliding window method reduces the dose and acquisition time and makes grating interferometry compatible with the continuous rotation of the gantry used in clinical CT", says Timm Weitkamp from Synchrotron SOLEIL.

Grating interferometry uses, in addition to information on absorption, measurements of X-ray phase changes to produce "differential phase contrast" images. Density differences of only 0.5 mg/cm3 can be discerned using grating-based phase contrast.

This shows 3D renderings of rat testicle (different cuts through the same tomogram). Detail within the image shows the epididymis (blue), adipose tissue (yellowish) and the testis itself. Inside the testis, clearly visible are the seminiferous tubules (with concentric structure) and the vessels (in dark red) especially visible at the edges of the organ. Image data collected at ESRF beamline ID19 Credit: ESRF/I. Zanette

To demonstrate the exceptional resolution of the new technique, various soft tissue body parts of a small mammalian specimen, a rat, were imaged. Within the tests, rendered in 3D, minute details are visible such as the individual seminiferous tubules, tiny tubes in which sperm cells are formed. "These structures are simply invisible in standard CT, even in high-resolution setups – not only because of their tiny size, but even more so because they hardly give any contrast", explains Zanette, who was recently presented the ESRF Young Scientist Award for her work.

In addition to phase contrast, grating interferometry can also yield so-called "dark-field" tomography . These show the presence of sub-pixel-size structures in the object, such as fibres, cracks or nanosized pores. In the study now reported in PNAS, wings of a wasp fossilised in amber – mostly invisible in previous X-ray investigations of the same specimen – were revealed in their full length with the dark-field signal. These results encourage the use of dark-field imaging not only in palaeontology and materials science, but also in the medical field, for example to reveal minuscule cracks in bones or small fibres in soft tissue.

The complementarity of the image signals accessed with grating interferometry and the new simple and fast acquisition procedure make grating an attractive technique for high-sensitivity imaging in the biomedical field, in materials science and in palaeontology, and possibly also in future hospital CT scanners.

Explore further: X-ray method improves soft tissue detail

More information: The main author of the paper is Irene Zanette from the European Synchrotron Radiation Facility ESRF (Grenoble, FR) and Technical University of Munich TUM (DE), and the team also comprises scientists from the Paul Scherrer Institute PSI (Villigen, CH), the Karlsruhe Institute of Technology KIT (DE), and Synchrotron SOLEIL (Gif-sur-Yvette, FR).

Related Stories

New technology sharpens X-ray vision

January 20, 2008

Researchers at the Paul Scherrer Institute (PSI) and the EPFL in Switzerland have developed a novel method for producing dark-field x-ray images at wavelengths used in typical medical and industrial imaging equipment.

New tool for early diagnosis of breast cancer

September 17, 2008

Scientists from Finland, Germany and the ESRF have developed a new X-ray technique for the early detection of breast cancer. This allows 3D visualization of the breast with a high spatial resolution and is extremely sensitive ...

Mini-CT scanner developed as a teaching tool

March 15, 2012

Biophysics professors at Western University, in London, Canada, have developed a CT (Computed Tomography) scanner small enough to sit on a desk. Jerry Battista, Chair of the Department of Medical Biophysics at the Schulich ...

Recommended for you

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...

Iron-gallium alloy shows promise as a power-generation device

September 29, 2015

An alloy first made nearly two decades ago by the U. S. Navy could provide an efficient new way to produce electricity. The material, dubbed Galfenol, consists of iron doped with the metal gallium. In new experiments, researchers ...

Extending a battery's lifetime with heat

October 1, 2015

Don't go sticking your electronic devices in a toaster oven just yet, but for a longer-lasting battery, you might someday heat them up when not in use. Over time, the electrodes inside a rechargeable battery cell can grow ...

Invisibility cloak might enhance efficiency of solar cells

September 30, 2015

Success of the energy turnaround will depend decisively on the extended use of renewable energy sources. However, their efficiency partly is much smaller than that of conventional energy sources. The efficiency of commercially ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.