Harnessing the power of killer bacteria

June 19, 2012
Harnessing the power of killer bacteria

(Phys.org) -- Scientists at The University of Nottingham have discovered new clues about a potential weapon in the fight against a dangerous superbug which is becoming increasingly resistant to usual forms of treatment.

Strains of the  now account for more hospital-acquired infections than both MRSA and Clostridium difficile put together and are extremely difficult to treat with conventional antibiotics.  

This latest research published in the Journal of Biological Chemistry has shed new light on how bacteria use ‘bacteriocins’, (substances that kill other of bacteria) to enter the bacterial cell and kill it, and how one bacteriocin produced by E. coli, ‘colicin A’, could be targeted to another cell protein (TolA) to create a new ‘Trojan horse’ weapon to ultimately kill the bacterial cell from within.

Bug on bug warfare

Leading the research, Dr Christopher Penfold, from the University’s Centre for Biomolecular Sciences, said:

“Bacteriocins are receiving a lot of interest currently for their potential use in probiotics, cancer therapies, food security and new antimicrobial techniques. As current antibiotic treatments to fight superbugs are increasingly proving ineffective, it could be that harnessing the toxic power of bugs to fight rival bugs is going to be the way forward.

“Our research has specifically provided structural evidence that colicin A in E.coli binds to a novel binding site of the protein (TolA) which is present naturally and crucial to the health of a bacterial cell. This is significant because it could lead to potential antimicrobial therapies through the design of small novel synthetic compounds that could ultimately block the natural functions of TolA leading to cell death and the eradication of the infection.”

The researchers found that although colicins have good antimicrobial activity it is difficult to envisage using them as potential new antibiotics because they are large protein molecules that would activate the body’s immune response to provide protection on the next occasion the colicin is used for treatment.

How molecules penetrate cell defences

This new research into the physical interaction of colicins with components of a bacterial cell is vital to the understanding of how molecules can gain access and penetrate the defences of a bacterial cell.  The research data shows that the interacting region of colicin A with TolA consists of a relatively small surface area whose bindingregion highlights essential molecular interactions that stabilise the interacting complex. This may provide important information for the design of novel synthetic substrates that could bind to and disable the essential functions of TolA leading to a loss of cellular functions associated with this protein and ultimately cell death. 

Explore further: Protein clue to tailor-made antibiotics

More information: The E.coli ‘colicin A’ research will be one of the latest breakthroughs in this field of medical science under discussion at a Biochemical Society conference at The University of Nottingham in July. ‘How bugs kill bugs: progress and challenges in bacteriocin research’ will bring together experts in microbial ecology, cell biology, structural biology and molecular biophysics to explore the role played by bacteriocins in intermicrobial competition, the molecular mechanisms by which bacteriocins penetrate the formidable defences of bacteria and how bacteriocin import has yielded novel insights into the organization and structural biochemistry of the bacterial cell.

Related Stories

E. coli packs a punch - an intestinal insight from ISIS

December 23, 2011

Recent studies at the ISIS neutron source, the Science and Technology Facilities Council’s world leading research centre, have given a new insight into how E. coli bacteria, often associated with food poisoning (and ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.