First observation of the hall effect in a Bose-Einstein condensate

Jun 20, 2012
First Observation of the Hall Effect in a Bose-Einstein Condensate
Starting with a cloud of about 20,000 atoms, the researchers varied the trapping force, pushing the atoms together and pulling them apart, to simulate the movement of charge carriers in an alternating current. In response, the atoms begin to move in a manner mathematically identical to how charged particles experiencing the Hall effect would move--at right angles to both the direction of the "current" flow and the artificial magnetic field. This causes the tilting motion. Credit: NIST

( -- National Institute of Standards and Technology researchers have observed for the first time the Hall effect in a gas of ultracold atoms. The Hall effect is an important interaction of magnetic fields and electric current more commonly associated with metals and semiconductors. Variations on the Hall effect are used throughout engineering and physics with applications ranging from automobile ignition systems to fundamental measures of electricity. The new discovery could help scientists learn more about the physics of quantum phenomena such as superfluidity and the quantum Hall effect.

Their paper appeared June 14, 2012, in the online version of the .

Discovered in 1879 by Edwin Hall, the is easiest to visualize in a rectangular conductor like a copper plate when a current is flowing along its length. A applied at a right angle to the electric current (down into the plate) deflects the path of the charge carriers in the current (electrons, for example) by inducing a force in the third direction at right angles to both the magnetic field and the current flow. This pushes the charge carriers toward one side of the plate and induces an electrical potential, or "Hall voltage." The Hall voltage can be used to measure the hidden internal properties of electrical systems, such as the concentration of the current carriers and the sign of their charge.

"Cold atom systems are a great platform for studying complicated physics because they are nearly free of obscuring impurities, the atoms move much more slowly than electrons in solids, and the systems are much simpler," says NIST researcher Lindsay LeBlanc. "The trick is creating the conditions that will get the atoms to behave the right way."

Measuring the Hall effect in a Bose-Einstein condensate builds upon previous NIST work generating synthetic electric and magnetic fields. First, the group uses lasers to tie the atoms’ energy to their momentum, putting two internal states into a relationship called a superposition. This causes the electrically neutral atoms to act as if they are charged particles. With the cloud of about 20,000 atoms gathered into a loose ball, the researchers then cyclically vary the trapping force—pushing the atoms in the cloud together and pulling them apart—to simulate the movement of in an alternating current. In response, the atoms begin to move in a manner that is mathematically identical to how charged particles experiencing the Hall effect would move, i.e., at right angles to both the direction of the "current" flow and the artificial magnetic field.

According to LeBlanc, measuring the Hall effect offers another tool for studying the physics of , a low-temperature quantum-based condition where liquids flow without friction, as well as the so-called , where the ratio of the Hall voltage and the current through the material is quantized, allowing for the determination of fundamental constants.

Explore further: Longer distance quantum teleportation achieved

More information: L.J. LeBlanc, K. Jimenez-Garcia, R.A. Williams, M.C. Beeler, A.R. Perry, W.D. Phillips and I.B. Spielman. Observation of a superfluid Hall effect. Proceedings of the National Academy of Science. Published online before print June 14, 2012, doi: 10.1073/pnas.1202579109

Related Stories

Cross-Dressing Rubidium May Reveal Clues for Exotic Computing

Feb 25, 2009

( -- Neutral atoms--having no net electric charge--usually don't act very dramatically around a magnetic field. But by “dressing them up” with light, researchers at the Joint Quantum Institute, a collaborative ...

Recommended for you

WEGA fusion experiment passed on to the USA

18 hours ago

The small WEGA fusion device at Max Planck Institute of Plasma Physics (IPP) in Greifswald is being handed over to the University of Illinois in Urbana-Champaign. The "Wendelstein-Experiment in Greifswald ...

Researchers design plasmonic cavity-free nanolaser

19 hours ago

( —A team of researchers at Imperial College in London has designed a new type of laser, one that could be made much smaller than today's models because it would be cavity-free. In their paper ...

Uncovering the forbidden side of molecules

Sep 21, 2014

Researchers at the University of Basel in Switzerland have succeeded in observing the "forbidden" infrared spectrum of a charged molecule for the first time. These extremely weak spectra offer perspectives ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jun 21, 2012
What I can see above are quite common Bloch waves, which the boson condensates are doing regularly in periodic magnetic field.