First observation of the hall effect in a Bose-Einstein condensate

June 20, 2012
First Observation of the Hall Effect in a Bose-Einstein Condensate
Starting with a cloud of about 20,000 atoms, the researchers varied the trapping force, pushing the atoms together and pulling them apart, to simulate the movement of charge carriers in an alternating current. In response, the atoms begin to move in a manner mathematically identical to how charged particles experiencing the Hall effect would move--at right angles to both the direction of the "current" flow and the artificial magnetic field. This causes the tilting motion. Credit: NIST

(Phys.org) -- National Institute of Standards and Technology researchers have observed for the first time the Hall effect in a gas of ultracold atoms. The Hall effect is an important interaction of magnetic fields and electric current more commonly associated with metals and semiconductors. Variations on the Hall effect are used throughout engineering and physics with applications ranging from automobile ignition systems to fundamental measures of electricity. The new discovery could help scientists learn more about the physics of quantum phenomena such as superfluidity and the quantum Hall effect.

Their paper appeared June 14, 2012, in the online version of the .

Discovered in 1879 by Edwin Hall, the is easiest to visualize in a rectangular conductor like a copper plate when a current is flowing along its length. A applied at a right angle to the electric current (down into the plate) deflects the path of the charge carriers in the current (electrons, for example) by inducing a force in the third direction at right angles to both the magnetic field and the current flow. This pushes the charge carriers toward one side of the plate and induces an electrical potential, or "Hall voltage." The Hall voltage can be used to measure the hidden internal properties of electrical systems, such as the concentration of the current carriers and the sign of their charge.

"Cold atom systems are a great platform for studying complicated physics because they are nearly free of obscuring impurities, the atoms move much more slowly than electrons in solids, and the systems are much simpler," says NIST researcher Lindsay LeBlanc. "The trick is creating the conditions that will get the atoms to behave the right way."

Measuring the Hall effect in a Bose-Einstein condensate builds upon previous NIST work generating synthetic electric and magnetic fields. First, the group uses lasers to tie the atoms’ energy to their momentum, putting two internal states into a relationship called a superposition. This causes the electrically neutral atoms to act as if they are charged particles. With the cloud of about 20,000 atoms gathered into a loose ball, the researchers then cyclically vary the trapping force—pushing the atoms in the cloud together and pulling them apart—to simulate the movement of in an alternating current. In response, the atoms begin to move in a manner that is mathematically identical to how charged particles experiencing the Hall effect would move, i.e., at right angles to both the direction of the "current" flow and the artificial magnetic field.

According to LeBlanc, measuring the Hall effect offers another tool for studying the physics of , a low-temperature quantum-based condition where liquids flow without friction, as well as the so-called , where the ratio of the Hall voltage and the current through the material is quantized, allowing for the determination of fundamental constants.

Explore further: Cross-Dressing Rubidium May Reveal Clues for Exotic Computing

More information: L.J. LeBlanc, K. Jimenez-Garcia, R.A. Williams, M.C. Beeler, A.R. Perry, W.D. Phillips and I.B. Spielman. Observation of a superfluid Hall effect. Proceedings of the National Academy of Science. Published online before print June 14, 2012, doi: 10.1073/pnas.1202579109

Related Stories

Cross-Dressing Rubidium May Reveal Clues for Exotic Computing

February 25, 2009

(PhysOrg.com) -- Neutral atoms--having no net electric charge--usually don't act very dramatically around a magnetic field. But by “dressing them up” with light, researchers at the Joint Quantum Institute, a collaborative ...

Recommended for you

Magnetism at nanoscale

August 3, 2015

As the demand grows for ever smaller, smarter electronics, so does the demand for understanding materials' behavior at ever smaller scales. Physicists at the U.S. Department of Energy's Ames Laboratory are building a unique ...

Study calculates the speed of ice formation

August 3, 2015

Researchers at Princeton University have for the first time directly calculated the rate at which water crystallizes into ice in a realistic computer model of water molecules. The simulations, which were carried out on supercomputers, ...

Small tilt in magnets makes them viable memory chips

August 3, 2015

University of California, Berkeley, researchers have discovered a new way to switch the polarization of nanomagnets, paving the way for high-density storage to move from hard disks onto integrated circuits.

Scientists bring order, and color, to microparticles

August 3, 2015

A team of New York University scientists has developed a technique that prompts microparticles to form ordered structures in a variety of materials. The advance, which appears in the Journal of the American Chemical Society ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

TkClick
not rated yet Jun 21, 2012
What I can see above are quite common Bloch waves, which the boson condensates are doing regularly in periodic magnetic field.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.