A genetic alternative to fertilizer

Jun 01, 2012
Figure 1: Green fluorescence indicates activation of the NRT2.4 transporter gene in Arabidopsis roots when nitrogen is scarce (left) but not when the soil is replete with this nutrient (right). © 2012 Takatoshi Kiba, RIKEN Plant Science Center

Several studies have shown that a lack of nitrogen in soils adversely affects crop yields. The modern use of nitrogen fertilizers has improved yields to meet expanding global food demand, but in some cases up to 50% of the nitrogen in fertilizers reaches surrounding water bodies in the form of nitrate, causing pollution. As the use of nitrogen fertilizers is rapidly increasing worldwide each year, there is a fundamental need to understand how plants absorb nitrate, and how this absorption can be improved in crops.

In Arabidopsis plants, nitrogen triggers expression of the nitrate transporter gene known as NRT2.4, which allows the plants to absorb trace amounts of nitrate for survival. Now, Takatoshi Kiba and colleagues at the RIKEN Plant Science Center in Yokohama, together with scientists from France and the UK, have gained insight into how NRT2.4 works to benefit nitrogen-starved plants.

“Although nitrogen is one of the most important nutrients for plant growth and productivity, how plants sense and respond to levels of nitrogen in soils is not well understood,” explains Kiba. “This is why we started the study focusing on the NRT2.4 gene.”

Using green fluorescent proteins and reporter enzymes to help pinpoint the location and presence of the gene, Kiba and his team found a pattern of NRT2.4 expression in the roots and shoots of Arabidopsis seedlings (Fig. 1).

The researchers worked with 10-day-old Arabidopsis seedlings, each weighing around 1 milligram, and measured the tiny amounts of nitrate absorbed by the plants. “Detection of nitrate influx at very low concentration was the main challenge of this work,” explains Kiba. “To obtain valid data, we had to improve the precision of the assay and measurement methods.” They prepared their samples very carefully in assays before measuring nitrate levels with high-performance liquid chromatography and an automated N/C analyzer-mass spectrometer.

The improved precision paid off, because the team’s results revealed that the NRT2.4 gene is crucial in increasing by Arabidopsis plants at very low concentrations. However, not all plants are equal. “Our preliminary investigation suggests that some domesticated crop plants do not have any mechanism equivalent to NRT2.4 in Arabidopsis,” Kiba explains. “It is possible that domesticated plants have lost such a mechanism because it is not necessary in a fertilized environment.”

Introducing the NRT2.4 gene to may improve nitrogen uptake efficiency in the future. Kiba notes that “this could eventually enable us to reduce nitrogen fertilizer use and to conduct sustainable agriculture easily.”

Explore further: Orchid named after UC Riverside researcher

More information: Kiba, T., Feria-Bourrellier, A.-B., Lafouge, F., Lezhneva, L., Boutet-Mercey, S., Orsel, M., Bréhaut, V., Miller, A., Daniel-Vedele, F., Sakakibara, H. & Krapp. A. The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants. The Plant Cell 24, 245-258 (2012). dx.doi.org/10.1105/tpc.111.092221

add to favorites email to friend print save as pdf

Related Stories

Nitrate fertiliser wasted on sugarcane

May 09, 2011

(PhysOrg.com) -- Rising nitrogen fertiliser application to sugarcane crops globally and the potential for this fertiliser to be leached from soil and lost to the atmosphere have been highlighted in a new study led by The ...

Is your drinking water safe?

Feb 28, 2008

Lake Bloomington is a major source of drinking water for residents of Bloomington, IL, and has a history of nitrate concentrations that exceed safe levels. Because Lake Bloomington has a record of elevated nitrate levels, ...

Getting to the root of nutrient sensing

Jun 14, 2010

New research published by Cell Press in the June 15th issue of the journal Developmental Cell, reveals how plants modify their root architecture based on nutrient availability in the soil.

Rising CO2 levels threaten crops and food quality

May 13, 2010

Rising levels of atmospheric carbon dioxide interfere with plants’ ability to convert nitrate into protein and could threaten food quality, according to a new study by researchers at the University of California, Davis. ...

Recommended for you

Male monkey filmed caring for dying mate (w/ Video)

15 hours ago

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Orchid named after UC Riverside researcher

Apr 17, 2014

One day about eight years ago, Katia Silvera, a postdoctoral scholar at the University of California, Riverside, and her father were on a field trip in a mountainous area in central Panama when they stumbled ...

In sex-reversed cave insects, females have the penises

Apr 17, 2014

Researchers reporting in the Cell Press journal Current Biology on April 17 have discovered little-known cave insects with rather novel sex lives. The Brazilian insects, which represent four distinct but re ...

Fear of the cuckoo mafia

Apr 17, 2014

If a restaurant owner fails to pay the protection money demanded of him, he can expect his premises to be trashed. Warnings like these are seldom required, however, as fear of the consequences is enough to ...

User comments : 0

More news stories

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

Plants with dormant seeds give rise to more species

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Male monkey filmed caring for dying mate (w/ Video)

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...