Researchers use flexible channel width to improve user experience on wireless systems

Jun 04, 2012

Researchers from North Carolina State University have developed a technique to efficiently divide the bandwidth of the wireless spectrum in multi-hop wireless networks to improve operation and provide all users in the network with the best possible performance.

"Our objective is to maximize while ensuring that all users get similar 'quality of experience' from the wireless system, meaning that users get similar levels of satisfaction from the performance they experience from whatever applications they're running," says Parth Pathak, a Ph.D. student in at NC State and lead author of a paper describing the research.

Multi-hop use multiple wireless nodes to provide coverage to a large area by forwarding and receiving data wirelessly between the nodes. However, because they have limited bandwidth and may interfere with each other's transmissions, these networks can have difficulty providing service fairly to all users within the network. Users who place significant demands on can effectively throw the system off balance, with some parts of the network clogging up while others remain underutilized.

Over the past few years, has become available that could help multi-hop networks use their wireless bandwidth more efficiently by splitting the band into channels of varying sizes, according to the needs of the users in the network. Previously, it was only possible to form channels of equal size. However, it was unclear how multi-hop networks could take advantage of this technology, because there was not a clear way to determine how these varying channel widths should be assigned.

Now an NC State team has advanced a solution to the problem.

"We have developed a technique that improves network performance by determining how much channel width each user needs in order to run his or her applications," says Dr. Rudra Dutta, an associate professor of computer science at NC State and co-author of the paper. "This technique is dynamic. The channel width may change – becoming larger or smaller – as the data travels between nodes in the network. The amount of channel width allotted to users is constantly being modified to maximize the efficiency of the system and avoid what are, basically, data traffic jams."

In simulation models, the new technique results in significant improvements in a network's data throughput and in its "fairness" – the degree to which all network users benefit from this throughput.

The researchers hope to test the technique in real-world conditions using CentMesh, a network on the NC State campus.

Explore further: DOCOMO and Huawei confirm LTE network over unlicensed spectrum

More information: The paper, "Channel Width Assignment Using Relative Backlog: Extending Back-pressure to Physical Layer," was co-authored by former NC State master's student Sankalp Nimborkhar. The paper will be presented June 12 at the 13th International Symposium on Mobile Ad Hoc Networking and Computing in Hilton Head, S.C.

Related Stories

Researchers boost efficiency of multi-hop wireless networks

Apr 19, 2012

Multi-hop wireless networks can provide data access for large and unconventional spaces, but they have long faced significant limits on the amount of data they can transmit. Now researchers from North Carolina State University ...

UCR Studying Self-Organizing Smart Wireless Networks

Nov 30, 2006

For wireless multihop networks to be used by thousands, the network has to be able to self-organize, which is what University of California, Riverside researchers are developing at the Bourns College of Engineering.

Researchers find way to measure effect of Wi-Fi attacks

Sep 12, 2011

Researchers from North Carolina State University have developed a way to measure how badly a Wi-Fi network would be disrupted by different types of attacks – a valuable tool for developing new security technologies.

Demand for wireless networks growing

Sep 07, 2005

Demand for wireless sensor networking is growing and deployments are accelerating, according to a recently published report by ON World.

AutoCell Accelerates Wireless LAN Performance up to Four Times

Oct 04, 2004

Propagate Networks, Inc. announced that The Tolly Group's test report released today validates the impact Propagate's AutoCell product has on improving the operations of Wireless LAN (WLAN) networks. AutoCell is Propagate's embedded cognitive radio firmwar ...

Recommended for you

Bringing emergency communications together

17 hours ago

A new University of Adelaide research project aims to improve emergency operations through integrated communications systems for police and the emergency services.

For top broadband policy, look no further than Canada

Aug 20, 2014

You might have seen communications minister Malcolm Turnbull raising the issue about Australian press not discussing policy problems and solutions from overseas, in a speech delivered at the Lowy Institute Media Awards last week: ...

Cities, states face off on municipal broadband

Aug 19, 2014

Wilson, N.C., determined nearly a decade ago that high-speed Internet access would be essential to the community's social and economic health in the 21st century, just as electricity, water and sewers were in the previous ...

New loss mechanism for global 4G roaming

Aug 19, 2014

A loss mechanism that has not been an issue in previous mobile handset antennas will become important for global 4G roaming, according to results of experiments carried out in Aalborg, Denmark.

User comments : 0