New energy source for future medical implants: sugar

Jun 13, 2012 by Anne Trafton
This silicon wafer consists of glucose fuel cells of varying sizes; the largest is 64 by 64 mm. Image: Sarpeshkar Lab

MIT engineers have developed a fuel cell that runs on the same sugar that powers human cells: glucose. This glucose fuel cell could be used to drive highly efficient brain implants of the future, which could help paralyzed patients move their arms and legs again.

The , described in the June 12 edition of the journal PLoS ONE, strips from glucose molecules to create a small electric current. The researchers, led by Rahul Sarpeshkar, an associate professor of electrical engineering and computer science at MIT, fabricated the fuel cell on a silicon chip, allowing it to be integrated with other circuits that would be needed for a brain implant.

The idea of a glucose fuel cell is not new: In the 1970s, scientists showed they could power a with a glucose fuel cell, but the idea was abandoned in favor of lithium-ion batteries, which could provide significantly more power per unit area than glucose fuel cells. These glucose fuel cells also utilized enzymes that proved to be impractical for long-term implantation in the body, since they eventually ceased to function efficiently.

The new twist to the MIT fuel cell described in PLoS ONE is that it is fabricated from silicon, using the same technology used to make semiconductor . The fuel cell has no biological components: It consists of a that strips electrons from glucose, mimicking the activity of cellular enzymes that break down glucose to generate , the cell’s energy currency. (Platinum has a proven record of long-term biocompatibility within the body.) So far, the fuel cell can generate up to hundreds of microwatts — enough to power an ultra-low-power and clinically useful neural implant.

“It will be a few more years into the future before you see people with spinal-cord injuries receive such implantable systems in the context of standard medical care, but those are the sorts of devices you could envision powering from a glucose-based fuel cell,” says Benjamin Rapoport, a former graduate student in the Sarpeshkar lab and the first author on the new MIT study.

Rapoport calculated that in theory, the glucose fuel cell could get all the sugar it needs from the cerebrospinal fluid (CSF) that bathes the brain and protects it from banging into the skull. There are very few cells in the CSF, so it’s highly unlikely that an implant located there would provoke an immune response. There is also significant glucose in the CSF, which does not generally get used by the body. Since only a small fraction of the available power is utilized by the glucose fuel cell, the impact on the brain’s function would likely be small.

Karim Oweiss, an associate professor of , computer science and neuroscience at Michigan State University, says the work is a good step toward developing implantable medical devices that don’t require external power sources.

“It’s a proof of concept that they can generate enough power to meet the requirements,” says Oweiss, adding that the next step will be to demonstrate that it can work in a living animal.

A team of researchers at Brown University, Massachusetts General Hospital and other institutions recently demonstrated that paralyzed patients could use a brain-machine interface to move a robotic arm; those have to be plugged into a wall outlet.

Mimicking biology with microelectronics

Sarpeshkar’s group is a leader in the field of ultra-low-power electronics, having pioneered such designs for cochlear implants and brain implants. “The glucose fuel cell, when combined with such ultra-low-power electronics, can enable or other implants to be completely self-powered,” says Sarpeshkar, author of the book “Ultra Low Power Bioelectronics.” This book discusses how the combination of ultra-low-power and energy-harvesting design can enable self-powered devices for medical, bio-inspired and portable applications.

Sarpeshkar’s group has worked on all aspects of implantable brain-machine interfaces and neural prosthetics, including recording from nerves, stimulating nerves, decoding nerve signals and communicating wirelessly with implants. One such neural prosthetic is designed to record electrical activity from hundreds of neurons in the brain’s motor cortex, which is responsible for controlling movement. That data is amplified and converted into a digital signal so that computers — or in the Sarpeshkar team’s work, brain-implanted microchips — can analyze it and determine which patterns of brain activity produce movement.

The fabrication of the glucose fuel cell was done in collaboration with Jakub Kedzierski at MIT’s Lincoln Laboratory. “This collaboration with Lincoln Lab helped make a long-term goal of mine — to create glucose-powered bioelectronics — a reality,” Sarpeshkar says. Although he has just begun working on bringing ultra-low-power and medical technology to market, he cautions that glucose-powered implantable medical devices are still many years away.

Explore further: US urged to drop India WTO case on solar

Related Stories

Cyborg snail produces electricity

Mar 15, 2012

(PhysOrg.com) -- First it was grapes, then cockroaches, and now snails have become the latest organism to generate electricity through an implanted biofuel cell. The process works similarly in all three situations: ...

Mimicking cells with transistors

Sep 28, 2011

As the world has become less analog and more digital -- as tape decks and TV antennas have given way to MP3 players and streaming video -- electrical engineers’ habits of thought have changed, too. In ...

Glucose biofuel cells may soon power implants

May 19, 2010

(PhysOrg.com) -- Researchers in Grenoble, France have for the first time successfully implanted glucose biofuel cells in living rats. The results suggest such cells may one day use the body’s own glucose ...

Recommended for you

Switch on sunlight for a brighter future

5 hours ago

Imagine sitting in a windowless room yet having the feeling of the sun shining on your face. This unique experience is now possible thanks to the COELUX EU-funded project which recreates the physical and ...

US urged to drop India WTO case on solar

21 hours ago

Environmentalists Wednesday urged the United States to drop plans to haul India to the WTO to open its solar market, saying the action would hurt the fight against climate change.

Is nuclear power the only way to avoid geoengineering?

Apr 23, 2014

"I think one can argue that if we were to follow a strong nuclear energy pathway—as well as doing everything else that we can—then we can solve the climate problem without doing geoengineering." So says Tom Wigley, one ...

Finalists named in Bloomberg European city contest

Apr 23, 2014

Amsterdam wants to create an online game to get unemployed young people engaged in finding jobs across Europe. Schaerbeek, Belgium, envisions using geothermal mapping to give households personalized rundowns of steps to save ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

TrinityComplex
not rated yet Jun 13, 2012
Joe: You certainly eat a lot of candy. What is that, your third candy bar in an hour?
Kim: I'm a cyborg.
Joe: Um... what?

We need to do more work on energy storage, but when you can eliminate the need for a battery, which becomes little more than dead weight once the charge is gone, it tends to make long term viability increase significantly. As electronic implants become more and more prevalent this will be of great use.

More news stories

Facebook buys fitness app Moves

Facebook has bought the fitness app Moves, which helps users monitor daily physical activity and their calorie counts on a smartphone.

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...