Elemental and magnetic imaging using X-rays and a microscope

June 14, 2012

A team of researchers has developed a new microscope that can image the elemental and magnetic properties of a wide range of energy-important materials that are used in devices such as solar cells and solid-state lighting.

The imager is based on a technique known as X-ray excited luminescence microscopy (XELM). It was created by hitching a standard to a synchrotron X-ray source. Synchrotrons produce X-rays and other forms of electromagnetic radiation by sending electrons on a curved path at nearly the speed of light.

When the X-rays strike the material being imaged, some of them are absorbed, which causes the sample to luminesce. The microscope portion of the imager is able to detect differences in this luminescence, which is directly related to both the elements in the sample and their magnetic properties. This technique combines the spatial resolution of with the element and magnetic specificity and precision of synchrotron radiation.

It is able to spatially resolve features as small as one micron. However, this value was degraded in practice due to vibrations or subtle shifting of the systems used to direct the X-ray beam, though future refinements should alleviate any stability issues.

XELM has some advantages over other techniques in that it is especially useful at low temperatures and can image in the presence of electric and magnetic fields. The results were accepted for publication in the American Institute of Physics' journal .

Explore further: Synchrotron x-ray experiments in the world's strongest magnetic field

More information: "Elemental and magnetic sensitive imaging using x-ray excited luminescence microscopy" Review of Scientific Instruments.

Related Stories

New magnetic imaging technique heralds advance in spintronics

August 11, 2011

Impressive results from experiments at Diamond Light Source on magnetic lensless imaging by Fourier transform holography using extended references have been published today in Optics Express, the journal of the Optical Society ...

New technique to see crystals like never before

November 30, 2011

An international team of scientists led by the Fresnel Institute and the ESRF (European Synchrotron Radiation Facility) in Grenoble has developed a new technique allowing to observe the nanometer-sized structure of crystalline ...

Recommended for you

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.