Selective and effective: silicon nanowires as photoelectrodes for carbon dioxide fixation

Jun 12, 2012
Selective and effective: silicon nanowires as photoelectrodes for carbon dioxide fixation

(Phys.org) -- During photosynthesis, plants capture solar energy and use it to drive chemical reactions. Their carbon source is the CO2 in air. In the journal Angewandte Chemie, American scientists have now proposed a new reaction mechanism that binds CO2 and strongly resembles photosynthesis. In this process, light energy is captured by silicon nanowires. It was successfully used to synthesize two precursors of the anti-inflammatory, pain reducing drugs ibuprofen and naproxen.

Natural photosynthesis involves two processes, the light and dark reactions. In the light reactions, photons are captured and their energy stored in the form of like NADPH (nicotinamide adenine dinucleotide phosphate) and ATP (adenosine triphosphate), which subsequently are used to bind CO2 for the synthesis of complex . At the heart of the dark reactions is the binding of CO2 to a sugar phosphate (ribulose-1,5-bisphosphate). This results in formation of a β–keto acid, which gets converted to a central building block for sugar synthesis.

A team led by Kian L. Tan and Dunwei Wang at Boston College (Chestnut Hill, USA) has been inspired by the mechanisms of the dark reactions. To capture sunlight, the scientists used p-doped silicon nanowires as a photocathode. These very effectively convert solar energy to electrical energy, are easy to produce, and are amazingly stable under the reaction conditions needed. Captured photons release electrons from the atoms in the . These electrons can easily be transferred to organic molecules to trigger chemical reactions. The researchers chose aromatic ketones as their starting materials. Transfer of electrons from the photocathode “activates” these molecules so that they can attack and bind CO2. Over several steps, the reaction produces an α-hydroxy acid. This allowed the team to produce precursors of ibuprofen and naproxen with high selectivity and in high yield.

This reaction sequence closely resembles natural photosynthesis and is completely different from previous approaches to binding CO2 with the aid of sunlight. This finally solves a problem: The very poor selectivity that automatically accompanies all traditional attempts at the direct photoreduction of CO2 has limited previous methods to the production of fuels. This new strategy delivers the selectivity required for the production of complex organic intermediates for the production of pharmaceuticals and high-value fine chemicals.

Explore further: Proteins: New class of materials discovered

More information: by Dunwei Wang, Silicon Nanowires as Photoelectrodes for Carbon Dioxide Fixation, Angewandte Chemie International Edition, Permalink to the article: dx.doi.org/10.1002/anie.201202569

Related Stories

Modified microbes turn carbon dioxide to liquid fuel

Mar 29, 2012

Imagine being able to use electricity to power your car — even if it's not an electric vehicle. Researchers at the UCLA Henry Samueli School of Engineering and Applied Science have for the first time ...

MIT researchers harness the sun's power

May 12, 2010

For decades, scientists have been trying to replicate the process of photosynthesis -- the process by which plants convert sunlight into energy. The Economist reports that Angela Belcher and her colleagues at the Massachusetts ...

Recommended for you

Proteins: New class of materials discovered

18 hours ago

Scientists at the Helmholtz Center Berlin along with researchers at China's Fudan University have characterized a new class of materials called protein crystalline frameworks.

The fluorescent fingerprint of plastics

Aug 21, 2014

LMU researchers have developed a new process which will greatly simplify the process of sorting plastics in recycling plants. The method enables automated identification of polymers, facilitating rapid separation ...

Water and sunlight the formula for sustainable fuel

Aug 21, 2014

An Australian National University (ANU) team has successfully replicated one of the crucial steps in photosynthesis, opening the way for biological systems powered by sunlight which could manufacture hydrogen ...

Researchers create engineered energy absorbing material

Aug 21, 2014

(Phys.org) —Materials like solid gels and porous foams are used for padding and cushioning, but each has its own advantages and limitations. Gels are effective as padding but are relatively heavy; gel performance ...

User comments : 0