Chemists offer law enforcement crime solving tool

Jun 19, 2012
UAlbany researchers analyze gunshot residue to determine the caliber and type of weapon used in a crime.

(Phys.org) -- University at Albany researchers have developed a method to determine the caliber and type of weapon used in a crime by analyzing gunshot residue (GSR). Using near-infrared (NIR) Raman microspectroscopy and advanced statistics, the new technique may play a pivotal role in law enforcement cases and forensic investigations. The research was highlighted in a recent issue of Analytical Chemistry.

Gunshot residue comprises particles from the parts of the ammunition and firearm that explode or reside near points of explosion including the primer, propellant, and tiny particles of the cartridge case and gun itself. Since residue can be recovered from several locations in the scene, it may be utilized for both physical and chemical evidence: GSR establishes that the shooting took place and a person participated in the shooting.

"If a crime is committed that involves a gun, we can examine the gunshot residue to help determine the size and type of ammunition used," said UAlbany professor of chemistry and lead researcher Igor Lednev. “Then through comparisons and elimination, it is quite likely to determine what kind of a gun was used in the crime."

Lednev, a member of the White House Committee on Forensic Science, explained, “In the absence of a weapon and discernible ammunition remainders at a crime scene, the ability to analyze and positively identify ammunition and firearms would have a significant impact on the efficiency of a criminal investigation.”

The research team combined GSR with Raman spectroscopy, in which laser light of a specific wavelength is shined on a sample, sending its molecules vibrating. Well-suited for forensic analysis, spectroscopy does not destroy evidence, requires limited sample preparation, and has a range of applications including the identification of explosives, paint, textile dyes, drugs, and bodily fluids.

Lednev concludes that more analysis is needed before CSI teams employ the method in a courtroom. One day, investigators might even be able to flip through a database of Raman spectra of different ammunitions to more quickly link that crime-scene residue to a specific kind of gun.

Explore further: Devices designed to identify pathogens in food

Related Stories

New forensic method could help police solve crimes

Jun 06, 2012

(Phys.org) -- Forensic researchers at Florida International University have developed a groundbreaking method that can tie a shooter to the ammunition used to commit a crime, giving law enforcement agencies a new tool to ...

An inside-out approach to solving more gun crime

Mar 25, 2011

A 30-year law enforcement veteran told police, prosecutors, public defenders and federal agents Wednesday that “balancing people, processes and technology” is the best way to overcoming obstacles and gaps during ...

Probing Question: Is forensic science on TV accurate?

Dec 03, 2009

Turn on the television any evening and you're apt to see a scene such as this: Five crime scene investigators, or CSIs, return to the crime scene at night to follow up on some leads. CSI Kathryn Willows looks ...

Recommended for you

Devices designed to identify pathogens in food

May 27, 2015

Researchers at the National Polytechnic Institute (IPN) in Mexico have developed a technology capable of identifying pathogens in food and beverages. This technique could work in the restaurant industry as ...

Biosensor may improve clinical diagnosis of influenza A

May 27, 2015

Sensors based on special sound waves known as surface acoustic waves (SAWs) are capable of detecting tiny amounts of antigens of Influenza A viruses. Developed by A*STAR researchers, the biosensors have the ...

New chip makes testing for antibiotic-resistant bacteria faster, easier

May 26, 2015

We live in fear of 'superbugs': infectious bacteria that don't respond to treatment by antibiotics, and can turn a routine hospital stay into a nightmare. A 2015 Health Canada report estimates that superbugs have already cost Canadians $1 billion, and are a "serious and growing issue." Each year two million people in the U.S. contract antibiotic-re ...

Use your smartphone for biosensing

May 26, 2015

An Australian research team has shown that smartphones can be reconfigured as cost-effective, portable bioanalytical devices, with details reported in the latest edition of the Open Access Journal 'Sensors'.

Faster, portable microbial analysis in the field

May 25, 2015

Until recently, it took hours – sometimes days – to analyze biological samples after they were frozen in the field and brought back to the laboratory. But now there is a faster, cheaper and smaller way ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.