The cell's 'New World': First complete atlas of RNA-binding proteins

Jun 01, 2012

In one of the most famous faux pas of exploration, Columbus set sail for India and instead 'discovered' America. Similarly, when scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, set out to find enzymes – the proteins that carry out chemical reactions inside cells – that bind to RNA, they too found more than they expected: 300 proteins previously unknown to bind to RNA – more than half as many as were already known to do so. The study, published online today in Cell, could help to explain the role of genes that have been linked to diseases like diabetes and glaucoma.

"We are very excited that, unlike Columbus, we found what we were looking for: well-known enzymes that bind to RNA," says Matthias Hentze, who led the study at EMBL with Jeroen Krijgsveld. "But we never thought there was still so much unexplored territory, so many of these RNA-binding proteins to be discovered."

Almost 50 of the new proteins Hentze and Krijgsveld found are encoded by genes known to be mutated in patients suffering from a variety of diseases, from diabetes and glaucoma to prostate and pancreatic cancers. This finding opens new avenues for researchers studying these disorders. It raises the possibility that such conditions could be caused by a malfunction not in the protein's previously established function, but in its potential role in RNA control.

The idea that enzymes might also function as genetic regulators, by binding to RNA and controlling its function, had already been raised by previous work in the Hentze lab. To investigate further, Alfredo Castello, Bernd Fischer at EMBL and colleagues developed a new method for identifying and isolating all proteins that bind to RNA in living cells. The new approach will have many further uses, as it can be applied to other cell types and conditions, to explore which proteins bind to under different circumstances. This will enable scientists to study how the cell's machinery adapts to stressful situations, responds to drugs or to changes in metabolism, or is altered in disease.

Explore further: Brand new technology detects probiotic organisms in food

add to favorites email to friend print save as pdf

Related Stories

Mechanism of microRNAs deciphered

May 16, 2007

Over 30% of our genes are under the control of small molecules called microRNAs. They prevent specific genes from being turned into protein and regulate many crucial processes like cell division and development, but how they ...

Cracking a virus protection shield

Jun 16, 2006

Ebola, measles and rabies are serious threats to public health in developing countries. Despite different symptoms all of the diseases are caused by the same class of viruses that unlike most other living beings carry their ...

Dundee researchers make gene breakthrough

Sep 16, 2011

Researchers at the University of Dundee have made a significant breakthrough in understanding how human cells decode genes important for cell growth and multiplication.

RNA on the move

Nov 26, 2009

In the fruit fly Drosophila, oskar mRNA, which is involved in defining the animal’s body axes, is produced in the nuclei of nurse cells neighbouring the oocyte, and must be transported to the oocyte and ...

Recommended for you

Fighting bacteria—with viruses

7 hours ago

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

8 hours ago

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0