Researchers test carbon nanotube-based ultra-low voltage integrated circuits

Jun 22, 2012

A team of researchers from Peking University in Beijing, China, and Duke University in Durham, North Carolina, has demonstrated that carbon nanotube-based integrated circuits can work under a supply voltage much lower than that used in conventional silicon integrated circuits.

Low supply voltage circuits produce less heat, which is a key limiting factor for increased circuit density. Carbon-based electronics have attracted attention mostly because of their speed.

The new research shows that carbon nanotube integrated circuits could also offer the promise of extending Moore's Law by allowing even more transistors to fit onto a single chip without overheating.

The results are reported in a paper accepted for publication in the American Institute of Physics' journal .

Explore further: Team finds electricity can be generated by dragging saltwater over graphene

More information: "Carbon nanotube based ultra-low voltage integrated circuits: scaling down to 0.4 V", Applied Physics Letters.

add to favorites email to friend print save as pdf

Related Stories

The incredible shrinking circuit

Mar 28, 2011

(PhysOrg.com) -- Just when it seemed that microchips couldn't get any tinier, a technique developed by researchers here at the University of Cambridge Engineering Department could lead to chips which are not ...

Spintronic transistor is developed

Oct 23, 2005

Researcher Christian Schoenenberger and colleagues at the University of Basel, Switzerland, developed a carbon nanotube transistor, opening a promising avenue toward the introduction of spin-based devices into computer chips, ...

Recommended for you

First direct observations of excitons in motion achieved

Apr 16, 2014

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton ...

User comments : 0

More news stories

Thinnest feasible nano-membrane produced

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

There's something ancient in the icebox

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...