Researchers test carbon nanotube-based ultra-low voltage integrated circuits

Jun 22, 2012

A team of researchers from Peking University in Beijing, China, and Duke University in Durham, North Carolina, has demonstrated that carbon nanotube-based integrated circuits can work under a supply voltage much lower than that used in conventional silicon integrated circuits.

Low supply voltage circuits produce less heat, which is a key limiting factor for increased circuit density. Carbon-based electronics have attracted attention mostly because of their speed.

The new research shows that carbon nanotube integrated circuits could also offer the promise of extending Moore's Law by allowing even more transistors to fit onto a single chip without overheating.

The results are reported in a paper accepted for publication in the American Institute of Physics' journal .

Explore further: Study sheds new light on why batteries go bad

More information: "Carbon nanotube based ultra-low voltage integrated circuits: scaling down to 0.4 V", Applied Physics Letters.

add to favorites email to friend print save as pdf

Related Stories

The incredible shrinking circuit

Mar 28, 2011

(PhysOrg.com) -- Just when it seemed that microchips couldn't get any tinier, a technique developed by researchers here at the University of Cambridge Engineering Department could lead to chips which are not ...

Spintronic transistor is developed

Oct 23, 2005

Researcher Christian Schoenenberger and colleagues at the University of Basel, Switzerland, developed a carbon nanotube transistor, opening a promising avenue toward the introduction of spin-based devices into computer chips, ...

Recommended for you

Study sheds new light on why batteries go bad

Sep 14, 2014

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

Moving silicon atoms in graphene with atomic precision

Sep 12, 2014

Richard Feynman famously posed the question in 1959: is it possible to see and manipulate individual atoms in materials? For a time his vision seemed more science fiction than science, but starting with groundbreaking ...

Researchers create world's largest DNA origami

Sep 11, 2014

Researchers from North Carolina State University, Duke University and the University of Copenhagen have created the world's largest DNA origami, which are nanoscale constructions with applications ranging ...

Excitonic dark states shed light on TMDC atomic layers

Sep 11, 2014

(Phys.org) —A team of Berkeley Lab researchers believes it has uncovered the secret behind the unusual optoelectronic properties of single atomic layers of transition metal dichalcogenide (TMDC) materials, ...

User comments : 0