Bytes for bits: Researchers develop a new, efficient aerosol module for climate models

Jun 27, 2012
Representing aerosols' complex physical and chemical effects in climate models is one of the largest challenges in projecting future climate change. Credit:

(Phys.org) -- Thinking small, scientists achieved big impact. Pacific Northwest National Laboratory researchers led a team developing a new computational module to depict tiny atmospheric particles that have a large effect on climate. Coming closer to a realistic depiction of these atmospheric bits, "MAM," short for Modal Aerosol Module, also achieves a new level of computational efficiency. Developed for the atmospheric component of the Community Earth System Model version 1 (CESM1) used for the Intergovernmental Panel on Climate Change 5th Assessment report, the minimal MAM representation means a big impact for climate modeling.

"MAM balances a realistic treatment of aerosol physiochemical properties and processes and the need for computer efficiency in climate simulations. Because CESM1 is a community climate model, MAM has generated a significant impact in both aerosol and climate communities," said Dr. Xiaohong Liu, lead author of the study and at PNNL.

Tiny but mighty. Aerosols are bits of dust, soot, and chemicals in the air that are intensely scrutinized by scientists because they affect climate and weather in so many big ways. These multi-talented specks can absorb or scatter the sun's energy and change what happens inside clouds. Considering the many complex and sometimes conflicting , PNNL scientists have developed a new representation to account for aerosols efficiently and accurately within one of the leading . This scientific advance will help provide a clearer picture of the future climate.

A major challenge for scientists working with global climate models (GCMs) is how to realistically represent aerosols, and all their complex properties and processes, within the limitations of computational resources. Achieving a minimal representation of aerosol in GCMs to capture the essentials of how aerosols affect the climate is highly desirable.

A research team, led by Liu, developed two MAM versions for the Community Atmospheric Model (CAM5): a complete 7-mode version and a simplified 3-mode version and compared them to observations. First, the complete 7-mode version was developed as a benchmark used in detailed studies. From the 7-mode version, the scientists developed a 3-mode version to use in decade- to century-long . By evaluating both versions with a collection of observation data obtained from surface stations, aircraft campaigns, and satellite measurements, the researchers showed that the simplified 3-mode version achieves the goal of a computationally compact representation of aerosol's effects on climate. Compared to earlier aerosol modules in CAM, MAM is capable of simulating the aerosol size distribution and has a more realistic representation of mixing states between aerosol components. Both features are critical for capturing the aerosol direct and indirect effects on climate.

MAM has been well received by the modeling community. It has been implemented in the Weather Research and Forecasting Model, a major regional model for weather, air quality, and climate studies. MAM was adopted by the National Aeronautics and Space Administration (NASA) Goddard Earth Observing System Model, version 5 (GEOS-5) for NASA's satellite data assimilation, climate modeling, and air quality studies.

Researchers next will improve the cloud and aerosol representations in CAM5 responsible for the modeled biases, in collaboration with scientists at the National Center for Atmospheric Research and Lawrence Livermore National Laboratory. For example, in a related study supported by another U.S. Department of Energy (DOE) modeling project, known as the Polar Project, scientists are improving the low-level cloud cover estimations and processes affecting aerosols transported to the Arctic region.

Explore further: Remnants of Tropical Depression Peipah still raining on Philippines

More information: Liu X, et al. 2012. "Toward a Minimal Representation of Aerosols in Climate Models: Description and Evaluation in the Community Atmosphere Model CAM5." Geoscientific Model Development 5(3):709-739. DOI:10.5194/gmd-5-709-2012

Related Stories

Connecting the dots on aerosol details

Jul 27, 2011

Predicting future climate change hangs on understanding aerosols, considered the fine details in the atmosphere. Researchers at Pacific Northwest National Laboratory and the National Center for Atmospheric ...

Down-and-dirty details of climate modeling

May 04, 2011

For the first time, researchers have developed a comprehensive approach to look at aerosols—those fine particles found in pollution—and their effect on clouds and climate. Scientists from Pacific ...

Tiny particles, big impact

Jun 03, 2011

Atmospheric aerosols may be small, ranging in size from a few nanometers to a few microns, but they have a big impact on climate.  At the Pacific Northwest National Laboratory, capabilities developed ...

Predicting Arctic sea ice loss

Jan 17, 2012

(PhysOrg.com) -- Arctic clouds are strongly tied to Arctic sea ice loss. To find the strength of those ties, a team led by scientists at Pacific Northwest National Laboratory tested a prominent climate model ...

A better picture of clouds

Feb 13, 2012

Some of us look at clouds and see animal shapes. Scientists are looking beyond. For the first time, a team of scientists led by Pacific Northwest National Laboratory used actual measurements of clouds and ...

The proof is in the clouds

Jan 26, 2012

For most people, clouds are just an indication of whether it's a "good" or "bad" day. A team of scientists from Pacific Northwest National Laboratory found that certain clouds hold the key to climate behavior ...

Recommended for you

Warm US West, cold East: A 4,000-year pattern

7 minutes ago

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

New study outlines 'water world' theory of life's origins

2 hours ago

(Phys.org) —Life took root more than four billion years ago on our nascent Earth, a wetter and harsher place than now, bathed in sizzling ultraviolet rays. What started out as simple cells ultimately transformed ...

Agriculture's growing effects on rain

22 hours ago

(Phys.org) —Increased agricultural activity is a rain taker, not a rain maker, according to researchers at Pacific Northwest National Laboratory and their collaborators at the University of California Los ...

User comments : 0

More news stories

UN weather agency warns of 'El Nino' this year

The UN weather agency Tuesday warned there was a good chance of an "El Nino" climate phenomenon in the Pacific Ocean this year, bringing droughts and heavy rainfall to the rest of the world.

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.