Brewing the world's hottest Guinness

Jun 27, 2012 By Justin Eure
Protons, neutrons melt to produce ‘quark-gluon plasma’ at RHIC

(Phys.org) -- The positive and sometimes unexpected impact of particle physics is well documented, from physicists inventing the World Wide Web to engineering the technology underlying life-saving magnetic resonance imaging (MRI) devices. But sometimes the raw power of huge experiments and scientific ambition draw the recognition of those seeking only the most extreme achievements on Earth.

Brookhaven National Laboratory’s Relativistic Heavy Ion Collider (RHIC) smashes particles together to recreate the incredible conditions that only existed at the dawn of time. The 2.4-mile underground atomic “racetrack” at RHIC produces fundamental insights about the laws underlying all visible matter. But along the way, its particles also smashed a world record.

Guinness World Records, no longer encumbered by “book of,” recognized Brookhaven Lab for achieving the “Highest Man-Made Temperature.” When RHIC collides gold ions at nearly the speed of light, the impact energy becomes so intense that the neutrons and protons inside the gold nuclei “melt,” releasing fundamental quarks and gluons that then form a nearly friction-free primordial plasma that only existed in Nature about a millionth of one second after the Big Bang. RHIC discovered this primordial, liquid-like quark-gluon plasma and measured its temperature at around 4 trillion degrees Celsius – that’s 250,000 times hotter than the center of the sun.

This video is not supported by your browser at this time.

“There are many cool things about this ultra-hot matter,” said physicist Steven Vigdor, who leads Brookhaven’s nuclear and program. “We expected to reach these temperatures – that is, after all, why RHIC was built – but we did not at all anticipate the nearly perfect liquid behavior.”

As it turns out, this surprising phenomenon occurs at both extremes of the temperature spectrum. 

“Other have now observed quite similar liquid behavior in trapped atom samples at temperatures near absolute zero, ten million trillion times colder than the quark-gluon plasma we create at RHIC,” Vigdor said. “This is just one among many unexpected connections we’ve found between RHIC and other scientific forefronts. The unity of physics is a beautiful thing!”

Speaking of unity in physics, a much larger collider is also probing quark-gluon plasma and generating sun-shaming temperatures. The 17-mile Large Hadron Collider (LHC) at Europe’s CERN laboratory smashes lead ions together in its own super-hot recreations of the Big Bang. And the LHC’s ALICE (A Large Ion Collider Experiment) may be positioned to trump RHIC’s record.

“The energy density at the LHC is a factor of three higher than at RHIC,” said CERN physicist Despina Hatzifotiadou. “This translates to a 30 percent increase in absolute temperature compared to the value achieved by RHIC. So I would say that ALICE has the record!”

But despite ALICE’s prowess, the collaboration has not published an official temperature measurement of its quark-gluon plasma, and the Guinness team is nothing if not official. For the time being, RHIC reigns, having driven physics forward by creating that revelatory multi-trillion degree matter many billions of times. But as with all records, RHIC’s Guinness is destined to be broken.

Explore further: Seeking 'absolute zero', copper cube gets chillingly close

Related Stories

'Perfect' Liquid Hot Enough to be Quark Soup (w/ Video)

Feb 15, 2010

Recent analyses from the Relativistic Heavy Ion Collider (RHIC), a 2.4-mile-circumference "atom smasher" at the U.S. DOE's Brookhaven National Laboratory, establish that collisions of gold ions traveling at ...

A flow of heavy-ion results from the Large Hadron Collider

Dec 08, 2010

The Large Hadron Collider shut down its proton beams on Nov. 4, 2010, and quickly began circulating beams of lead ions, a run scheduled to last a month. Within days, the first results from ALICE, the LHC experiment ...

Measuring material hotter than the sun

Mar 02, 2010

(PhysOrg.com) -- Three Vanderbilt physicists are members of the scientific team that have reported creating an exotic state of matter with a temperature of four trillion degrees Celsius. It's the hottest temperature ...

Recommended for you

Backpack physics: Smaller hikers carry heavier loads

13 hours ago

Hikers are generally advised that the weight of the packs they carry should correspond to their own size, with smaller individuals carrying lighter loads. Although petite backpackers might appreciate the ...

Extremely high-resolution magnetic resonance imaging

13 hours ago

For the first time, researchers have succeeded to detect a single hydrogen atom using magnetic resonance imaging, which signifies a huge increase in the technology's spatial resolution. In the future, single-atom ...

'Attosecond' science breakthrough

15 hours ago

Scientists from Queen's University Belfast have been involved in a groundbreaking discovery in the area of experimental physics that has implications for understanding how radiotherapy kills cancer cells, among other things.

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

Eoprime
not rated yet Jun 27, 2012
"In February 2010, scientists at Brookhaven National...."
Does it take that long to get into the records?
ShotmanMaslo
1 / 5 (3) Jun 27, 2012
What about LHC?
El_Nose
5 / 5 (3) Jun 27, 2012
LHC's heaviest ion is Lead. and IF YOU READ THE ARTICLE -- the scientists states that LHC probably is 30% higher in temperature - they just haven't made a published measurement