Bandgap engineering for high-efficiency solar cell design

Jun 22, 2012

ZnSnP2, an absorber material for solar cells, transitions from an ordered to a disordered structure at high temperatures. Researchers from University College London and the University of Bath have proposed taking advantage of this structural change to design high-efficiency solar absorbers.

The team used theoretical calculations to investigate the electronic structure of both phases, and predicted a significant difference in the bandgap between the ordered and fully disordered materials.

Experimental measurements of the bandgap of ZnSnP2 are consistent with predictions from partially disordered phases.

In a paper accepted for publication in the American Institute of Physics' journal , the researchers propose that a family of ZnSnP2 materials with different structural phases could provide a graded solar cell system that absorbs light across a wide swath of the spectrum.

Explore further: New research predicts when, how materials will act

More information: "Bandgap engineering of ZnSnP2 for high-efficiency solar cells", Applied Physics Letters.

add to favorites email to friend print save as pdf

Related Stories

Crystal to glass cooling model developed

Feb 22, 2006

University of Tokyo scientists have discovered why cooling sometimes causes liquid molecules to form disordered glasses, rather than ordered crystals.

Digital memory enters a new phase

Mar 15, 2005

With the recent explosion in the popularity of digital music, digital photography and even digital video, the demand for faster, higher-capacity and cheaper computer memory has never been greater. Writing in the April issue ...

Photovoltaic cells tap underwater solar energy

Jun 07, 2012

Scientists at the U.S. Naval Research Laboratory (NRL), Electronics Science and Technology Division, dive into underwater photovoltaic research to develop high bandgap solar cells capable of producing sufficient ...

Recommended for you

Unified theory for skyrmion-materials

17 hours ago

Magnetic vortex structures, so-called skyrmions, could in future store and process information very efficiently. They could also be the basis for high-frequency components. For the first time, a team of physicists ...

Why seashells' mineral forms differently in seawater

21 hours ago

For almost a century, scientists have been puzzled by a process that is crucial to much of the life in Earth's oceans: Why does calcium carbonate, the tough material of seashells and corals, sometimes take ...

The building blocks of the future defy logic

Feb 26, 2015

Wake up in the morning and stretch; your midsection narrows. Pull on a piece of plastic at separate ends; it becomes thinner. So does a rubber band. One might assume that when a force is applied along an ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.