Bandgap engineering for high-efficiency solar cell design

Jun 22, 2012

ZnSnP2, an absorber material for solar cells, transitions from an ordered to a disordered structure at high temperatures. Researchers from University College London and the University of Bath have proposed taking advantage of this structural change to design high-efficiency solar absorbers.

The team used theoretical calculations to investigate the electronic structure of both phases, and predicted a significant difference in the bandgap between the ordered and fully disordered materials.

Experimental measurements of the bandgap of ZnSnP2 are consistent with predictions from partially disordered phases.

In a paper accepted for publication in the American Institute of Physics' journal , the researchers propose that a family of ZnSnP2 materials with different structural phases could provide a graded solar cell system that absorbs light across a wide swath of the spectrum.

Explore further: Interfaces within materials can be patterned as a means of controlling the properties of composites

More information: "Bandgap engineering of ZnSnP2 for high-efficiency solar cells", Applied Physics Letters.

add to favorites email to friend print save as pdf

Related Stories

Crystal to glass cooling model developed

Feb 22, 2006

University of Tokyo scientists have discovered why cooling sometimes causes liquid molecules to form disordered glasses, rather than ordered crystals.

Digital memory enters a new phase

Mar 15, 2005

With the recent explosion in the popularity of digital music, digital photography and even digital video, the demand for faster, higher-capacity and cheaper computer memory has never been greater. Writing in the April issue ...

Photovoltaic cells tap underwater solar energy

Jun 07, 2012

Scientists at the U.S. Naval Research Laboratory (NRL), Electronics Science and Technology Division, dive into underwater photovoltaic research to develop high bandgap solar cells capable of producing sufficient ...

Recommended for you

A new, tunable device for spintronics

Aug 28, 2014

Recently, the research group of Professor Jairo Sinova from the Institute of Physics at Johannes Gutenberg University Mainz in collaboration with researchers from the UK, Prague, and Japan, has for the first time realised ...

User comments : 0