After 50 year search, research team finds plutonium signature

May 18, 2012 by Bob Yirka report
Plutonium,. Pictured against an inch and centimeter rule. Image: Wikipedia.

(Phys.org) -- After fifty years of trying by various researchers, a group made up of teams from Los Alamos National Libratory in the US and the Atomic Energy Agency in Japan, have succeeded in spotting the signature of plutonium-239 with magnetic resonance (NMR) spectroscopy. Using a super cooled sample of plutonium(IV) oxide, the team as they describe in their paper published in the journal Science, was able to stabilize magnetic interference to find the elusive signature.

NMR spectroscopy has been used for years to analyze and hopefully gain a better understanding of many materials; of particular interest have been those that have a spin of ½, such as hydrogen and carbon isotopes. One that has been a stickler however, is plutonium-239, which until now has defied attempts by researchers to observe its signature due to its unusually powerful internal magnetic field that results from the strong interaction between two of its electrons with its nucleus. Also complicating matters are restrictions placed on researchers trying to analyze it due to both political and safety issues.

Now however, circumstances came together in just the right way to allow the combined team to get a glimpse of what so many before them had been looking for. To make it happen, they cooled a sample of plutonium(IV) oxide to 4 Kelvin, which allowed them to side-step the problem of magnetic field issues while at the same time slowing things down giving the researchers time to see what was happening with the sample during spectroscopy. After fifty years of futility, that was apparently all it took.

They key the team says, was in choosing the right material. Their (IV) oxide dust sample was not only 94% pure, but available. They also pointed out that the team had more time to focus on their project than had others before, which meant they could make many runs, each time tweaking the parameters slightly as they searched for the signal, which was eventually found at near 5.8 Tesla. They also note that they were in fact about to give up entirely just prior to finding success.

In addition to offering important new information about plutonium-239, observation of its signature, i.e. nailing down its spectrum, is expected to help researchers find better ways to deal with nuclear waste.

Explore further: Breakthrough in OLED technology

More information: Observation of 239Pu Nuclear Magnetic Resonance, Science 18 May 2012: Vol. 336 no. 6083 pp. 901-904 DOI: 10.1126/science.1220801

ABSTRACT
In principle, the spin-½ plutonium-239 (239Pu) nucleus should be active in nuclear magnetic resonance spectroscopy. However, its signal has eluded detection for the past 50 years. Here, we report observation of a 239Pu resonance from a solid sample of plutonium dioxide (PuO2) subjected to a wide scan of external magnetic field values (3 to 8 tesla) at a temperature of 4 kelvin. By mapping the external field dependence of the measured resonance frequency, we determined the nuclear gyromagnetic ratio 239γn(PuO2)/2π to be 2.856 ± 0.001 megahertz per tesla (MHz/T). Assuming a free-ion value for the Pu4+ hyperfine coupling constant, we estimated a bare 239γn/2π value of ~2.29 MHz/T, corresponding to a nuclear magnetic moment of μn ≈ 0.15μN (where μN is the nuclear magneton).

Related Stories

Scientists discover historic sample of bomb-grade plutonium

Feb 26, 2009

(PhysOrg.com) -- Scientists in Washington state are reporting the surprise discovery of the oldest known sample of reactor-produced bomb-grade plutonium, a historic relic from the infancy of America’s nuclear weapons program. ...

Plutonium in troubled reactors, spent fuel pools

Mar 18, 2011

(AP) --The fuel rods at all six reactors at the stricken Fukushima Dai-ichi complex contain plutonium - better known as fuel for nuclear weapons. While plutonium is more toxic than uranium, other radioactive ...

Recommended for you

Breakthrough in OLED technology

11 hours ago

Organic light emitting diodes (OLEDs), which are made from carbon-containing materials, have the potential to revolutionize future display technologies, making low-power displays so thin they'll wrap or fold ...

Throwing light on a mysterious human 'superpower'

14 hours ago

Most people, at some point in their lives, have dreamt of being able to fly like Superman or develop superhuman strength like the Hulk. But very few know that we human beings have a "superpower" of our own, ...

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.