Why women wiggling in high heels could help improve prosthetic limbs and robots

May 08, 2012
Why women wiggling in high heels could help improve prosthetic limbs and robots
Oscar Pistorius

People walking normally, women tottering in high heels and ostriches strutting all exert the same forces on the ground despite very differently-shaped feet, according to research funded by the Wellcome Trust and the Biotechnology and Biological Sciences Research Council. The finding suggests that prosthetic lower limbs and robots' legs could be made more efficient by making them less human-like and more like the prosthetics used by 'Blade Runner' Oscar Pistorius.

Walking involves a repeated process referred to by scientists as 'crash, vault, push' – landing ('crashing') on the heel, vaulting over the stationary leg and then pushing off with the toes. This is the most economical way of walking and, as research published today in the Journal of the Royal Society Interface shows, the force exerted on the ground is the same for people walking normally or in high heels and for ostriches.

Dr Tatjana Hubel from the Royal Veterinary College explains: "Despite vastly differing arrangements of joints and hip wiggles, humans walking normally, women in extremely high heels and all produce strikingly similar forces when walking. This is the most mechanically economical way of walking. We do everything we can to make the forces follow the same pattern, which is why for example women wiggle their bottoms when they're in . The question for us is, why is the human foot shaped the way that it is and not, say, like an ostrich's?"

When scientists model how the leg moves, they tend to simplify the movement and view the leg as a stick with a block on top (the body) which moves in an inverted pendulum motion. In this simplified model, the shape of the human foot does not make sense. But in fact, the human leg is more complicated than this; it contains muscles that likely evolved out of a tension between being optimised for walking and being more efficient at running. As humans are intelligent and able to plan and use tools, being able to move quickly to catch a prey or to evade a predator is not essential.

The shape of the human foot means that when the foot is flat on the ground, all the force goes through the ankles, allowing the muscles to support the weight of the body whilst being largely unloaded during the 'vault' stage. When muscles bear a load, they get tired easily, even if they are doing no work. For example, if we hold our arms outstretched, after a few minutes they will grow tired; by comparison, a JCB digger can extend its arm indefinitely.

The researchers believe this finding may have implications for the design of better prosthetic limbs for above-knee amputees and for the of humanoid robots. These might be improved by bearing more resemblance to an ostrich leg than that of a human.

Dr Jim Usherwood, a Wellcome Trust Senior Research Fellow at the Royal Veterinary College, explains: "If you want to make a good prosthetic foot but don't care what it looks like, you should put the motor – in this case, the ankle – as far up the leg as possible, where it can provide the power without making the feet heavy and hard to swing backwards and forwards. There's no point in putting the motor at the end of the foot, where it makes the leg more difficult to swing forwards – important in both walking and running.

"Some clever prosthetics copy the ankle and are very human-like, which is fine for to replace the foot, but for above-knee amputee, a typical prosthetic leg which is very human-like is heavy and hard to move around. It's much better to have an ostrich foot at the end of a very lightweight leg.

An example of this kind of prosthetic already in use are the blades used by Paralympic athlete Oscar Pistorius – the 'Blade Runner'. These blades are light, springy and without a heel, similar to an ostrich's legs, which are optimised for running from predators rather than for .

Explore further: Oregon food label measure headed for recount

More information: Usherwood, J et al. The human foot and heel-sole-toe walking strategy: a mechanism enabling an inverted pendular gait with low isometric muscle force. JR Soc Interface; 9 May 2012.

Related Stories

The spring in your step is more than just a good mood

Apr 23, 2008

Scientists using a bionic boot found that during walking, the ankle does about three times the work for the same amount of energy compared to isolated muscles---in other words, the spring in your step is very real and helps ...

Bionic leg makes amputee faster on his feet

Jan 24, 2012

Craig Hutto considers himself part bionic man. In 2005, doctors amputated his leg after a shark attacked him during a fishing trip off the Florida Gulf Coast.

Study: Long legs are more efficient

Mar 12, 2007

Scientists have known for years that the energy cost of walking and running is related primarily to the work done by muscles to lift and move the limbs. But how much energy does it actually take to get around? Does having ...

Recommended for you

Oregon food label measure headed for recount

14 hours ago

Tallies of the last remaining ballots show an Oregon measure that would require labeling of genetically modified foods lost by only 809 votes and is headed for an automatic recount.

How photosynthesis changed the planet

Nov 20, 2014

Two and a half billion years ago, single-celled organisms called cyanobacteria harnessed sunlight to split water molecules, producing energy to power their cells and releasing oxygen into an atmosphere that ...

From dried cod to tissue sample preservation

Nov 19, 2014

Could human tissue samples be dried for storage, instead of being frozen? Researchers are looking at the salt cod industry for a potential tissue sample drying technology that could save money without sacrificing tissue quality.

Riding a food fad to an opportunity

Nov 18, 2014

Until a couple years ago, Shaun Paul's knowledge of chia was limited to the kitschy terracotta Chia Pet figurines. But recently, chia seeds, promoted as a nutritional powerhouse, have earned a growing consumer ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.