New study finds titan cells protect Cryptococcus

May 28, 2012

Giant cells called "titan cells" protect the fungus Cryptococcus neoformans during infection, according to two University of Minnesota researchers. Kirsten Nielsen, Ph.D., an assistant professor in the department of microbiology, and recent Ph.D. recipient Laura Okagaki believe their discovery could help develop new ways to fight infections caused by Cryptococcus.

The findings will be published in the June issue of the journal . The study was funded by the National Institutes of Health and the University of Minnesota's Medical School.

Cryptococcus, a fungus frequently found in dust and dirt, is responsible for the deaths of more than 650,000 worldwide each year. It is also a potentially deadly concern among chemotherapy and organ transplant patients. Currently, Cryptococcus causes more annual deaths in sub-Saharan Africa than tuberculosis.

"While most healthy individuals are resistant to Cryptococcus infections, the fungus can cause for those with already weak immune systems," said Dr. Nielsen.

When inhaled, Cryptococcus can cause an infection in the lungs. This infection can spread to the brain and result in meningitis, an often-deadly inflammation of the brain and spine.

Nielsen and Okagaki found that titan cells, or Cryptococcus cells ten to twenty times the size of a normal cell, are too large to be destroyed by the body's .

Researchers also found the presence of titan cells can protect all Cryptococcus cells in the area, even the normal sized Cryptococcus cells.

"This tells us that titan is an important aspect of the interaction between the human/host and the organism that allows Cryptococcus to cause disease," said Nielsen. "This information will help us find new ways to treat Cryptococcus infections that are very difficult to treat with currently available drugs."

Explore further: Fighting bacteria—with viruses

Related Stories

Predicting fatal fungal infections

Jun 16, 2009

In a study published in The Journal of Infectious Diseases, researchers from Albert Einstein College of Medicine of Yeshiva University have identified cells in blood that predict which HIV-positive indivi ...

GE eucalyptus tree investigation urged

Jun 15, 2007

Several U.S. environmental groups are upset concerning a possible link between a pathogenic fungus and genetically engineered eucalyptus trees.

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0