New technique detects trace levels of new class of cancer biomarkers

May 18, 2012

( -- In less than a decade, a new type of RNA — microRNA (miRNA) — has gone from curiosity to one of the most important sets of regulatory molecules in the body. And because these short pieces of RNA are associated with specific tissues and functions, and because they circulate stably in the bloodstream, they have great potential as diagnostic biomarkers for cancer and other diseases. The major obstacle to realizing that potential is that miRNAs are present in blood at levels too low to detect reliably with today's applicable biomolecular detection technology.

That obstacle is no more. A team of investigators from the Northwestern University Center for Cancer Nanotechnology Excellence (Northwestern CCNE) has developed a rapid, array–based technology using gold nanoparticles that is capable of detecting miRNAs at levels as low as 1 femtomolar (about 30,000 molecules in a drop of blood). In contrast, standard fluorescence–based detection schemes are unable to detect 88 percent of the miRNAs in blood at concentrations 10 times higher than the limit of detection of the new assay. The Northwestern CCNE team, led by Chad Mirkin and Shad Thaxton, published the details of their new assay in the journal Analytical Chemistry.

The new assay, which the researchers call the Scanometric platform, can detect hundreds to thousands of miRNAs simultaneously. After isolating miRNA from human blood or a tissue sample, the Northwestern CCNE team uses an enzyme to attach a universal linker to every molecule of miRNA. They then add the modified miRNA mixture to an array comprising individual spots of DNA, each of which is designed to bind to a known miRNA sequence. After allowing the miRNAs in the sample to bind to their particular spot on the array, the investigators wash the array to remove unbound miRNAs and then treat it with the key reagent – a spherical nucleic acid–gold nanoparticle conjugate that binds very tightly to the universal linker that had been added to the miRNA mixture. Finally, the array is treated with a solution that adds an extra shell of gold onto the bound spherical nucleic acid–gold nanoparticles. This last step enhances the nanoparticle's ability to scatter light and greatly increases the assay's sensitivity. The treated array is then imaged with a commercial array scanner.

To test the performance of their system, the Northwestern CCNE team used their array to detect miRNAs isolated from cells. The Scanometric miRNA platform 88 percent more miRNAs than did the standard fluorescence–based assays now used to measure miRNA content in biological samples. The team then used their assay to detect miRNAs from human prostate cancer tissue samples and found distinct differences between tissue samples obtained from slow–growing versus aggressive prostate cancers, and were able to identify the aggressive tumors with 98.8 percent accuracy.

Further analysis of the data revealed a small set of miRNAs that appear to be deregulated and may play a role in the progression of prostate cancer. Some of these miRNAs may prove to be useful as novel for prostate cancer, though the investigators note that a larger clinical trial is needed to confirm this finding.

This work, which is detailed in a paper titled, "Scanometric microRNA array profiling of prostate cancer markers using spherical nucleic acid–gold nanoparticle conjugates," was supported in part by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer. An abstract of this paper is available at the journal's website.

Explore further: Researchers identify less-invasive method for kidney diagnostics

Related Stories

Study links 23 microRNAs to laryngeal cancer

Sep 13, 2011

A Henry Ford Hospital study has identified 23 microRNAs for laryngeal cancer, a discovery that could yield new insight into what causes certain cells to grow and become cancerous tumors in the voice box.

Blood 'fingerprints' for cancer

Sep 03, 2008

Serum microRNAs (miRNAs) can serve as biomarkers for the detection of diseases including cancer and diabetes, according to research published online this week in Cell Research. The findings pave the way for a revolutionary ...

Researchers discover how microRNAs control protein synthesis

Jul 09, 2007

While most RNAs work to create, package, and transfer proteins as determined by the cell’s immediate needs, miniature pieces of RNA, called microRNAs (miRNAs) regulate gene expression. Recently, researchers from the University ...

Recommended for you

Research center develops single-cell analyzer

May 29, 2015

Researchers at Missouri University of Science and Technology have developed a probe capable of detecting signs of disease or environmental change inside a single human cell.

Devices designed to identify pathogens in food

May 27, 2015

Researchers at the National Polytechnic Institute (IPN) in Mexico have developed a technology capable of identifying pathogens in food and beverages. This technique could work in the restaurant industry as ...

Biosensor may improve clinical diagnosis of influenza A

May 27, 2015

Sensors based on special sound waves known as surface acoustic waves (SAWs) are capable of detecting tiny amounts of antigens of Influenza A viruses. Developed by A*STAR researchers, the biosensors have the ...

New chip makes testing for antibiotic-resistant bacteria faster, easier

May 26, 2015

We live in fear of 'superbugs': infectious bacteria that don't respond to treatment by antibiotics, and can turn a routine hospital stay into a nightmare. A 2015 Health Canada report estimates that superbugs have already cost Canadians $1 billion, and are a "serious and growing issue." Each year two million people in the U.S. contract antibiotic-re ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.