Team finds buckyballs grow larger by 'eating' vaporized carbon

May 30, 2012 by Bob Yirka weblog
Quantum chemical modelling of growth processes. Image (c) Nature Communications, doi:10.1038/ncomms1853

(Phys.org) -- Fullerenes were first discovered back in 1985 by a team of physicists vaporizing graphite in helium gas, one class of which, the buckminsterfullerene (C60) named after Buckminster Fuller and his geodesic domes, forms into spherical, hollow cages that resemble soccer balls. Since that time, a lot of study has been done on and with so named buckyballs, yet no one has been able to figure out how exactly they form. Now, new research by one of the original discoverers of fullerenes, Harold Kroto and his team at Florida State University moves closer to that goal in finding that buckyballs grow larger when exposed to vaporized carbon. The team has written a paper describing their observations and have had it published in the journal Nature Communications.

Because of their similarity to graphene, sheets of one atom thick carbon atoms that form hexagonal patterns, researchers have wondered if might come into being after first existing as simple sheets that somehow warp to the degree that they form into balls. Unfortunately, no one has yet been able to create the right set of circumstances that have allowed them to witness the actual birth of a fullerene structure, though they have found that they also exist in nature as well, specifically in the soot that comes from burning candles, and near red giant stars or supernovae.

Using a Fourier transform ion cyclotron resonance , Kroto and his team were able to analyze what happens when buckyballs come to exist in the same space as vaporized carbon, they grow larger. They found that small fullerenes grew to buckyball size, and buckyball sized fullerenes grew into larger balls by “eating” or absorbing into their structure. They also found that the original structure was maintained by atoms being shifted around during the absorption process.

In learning more about how fullerenes are formed, and now how they grow, researchers are able to apply new evidence to help explain other natural phenomenon, such as how they come to exist in space in such large quantities such as is found with carbon stars and supernovae and why their distribution in the lab is so similar to what is found in the soot produced by a burning candle.

Explore further: Carbon nanoballs can greatly contribute to sustainable energy supply

More information: Closed network growth of fullerenes, Nature Communications 3, Article number: 855 doi:10.1038/ncomms1853

Abstract
Tremendous advances in nanoscience have been made since the discovery of the fullerenes; however, the formation of these carbon-caged nanomaterials still remains a mystery. Here we reveal that fullerenes self-assemble through a closed network growth mechanism by incorporation of atomic carbon and C2. The growth processes have been elucidated through experiments that probe direct growth of fullerenes upon exposure to carbon vapour, analysed by state-of-the-art Fourier transform ion cyclotron resonance mass spectrometry. Our results shed new light on the fundamental processes that govern self-assembly of carbon networks, and the processes that we reveal in this study of fullerene growth are likely be involved in the formation of other carbon nanostructures from carbon vapour, such as nanotubes and graphene. Further, the results should be of importance for illuminating astrophysical processes near carbon stars or supernovae that result in C60 formation throughout the Universe.

via RSC

Related Stories

Buckyballs... throwing astronomers a curve

Mar 07, 2011

When I first heard about buckyballs a couple of decades ago, I had nothing but the deepest respect for anyone who understood abstract ideas like string theory and branes. After all, how often were you likely ...

Space buckyballs thrive, finds NASA Spitzer Telescope

Oct 28, 2010

(PhysOrg.com) -- Astronomers have discovered bucket loads of buckyballs in space. They used NASA's Spitzer Space Telescope to find the little carbon spheres throughout our Milky Way galaxy -- in the space ...

Has graphene been detected in space?

Aug 11, 2011

(PhysOrg.com) -- A team of astronomers, using the Spitzer Space Telescope, have reported the first extragalactic detection of the C70 fullerene molecule, and the possible detection of planar C24 ("a piece of graphene ...

Researchers create DNA buckyballs for drug delivery

Aug 29, 2005

DNA isn't just for storing genetic codes any more. Since DNA can polymerize -- linking many molecules together into larger structures -- scientists have been using it as a nanoscale building material, constructing ...

Recommended for you

Demystifying nanocrystal solar cells

1 hour ago

ETH researchers have developed a comprehensive model to explain how electrons flow inside new types of solar cells made of tiny crystals. The model allows for a better understanding of such cells and may ...

Researchers use oxides to flip graphene conductivity

Jan 26, 2015

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

Jan 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.