Let the sun shine and the plants will follow

May 30, 2012
Let the sun shine and the plants will follow
Credit: Shuttershock

Leonardo da Vinci, the Italian Renaissance scientist and artist extraordinaire, in the 15th century was the first to record his observation that some plants appeared to follow the Sun, and he was not the last. How this was scientifically achieved and why this occurred, however, remained a mystery to him and everyone that followed. But a European team of researchers may have come one step closer to solving this mystery. The answer, they say, lies with auxin - a class of plant hormone. The findings of their study were published in the journal Nature.

While the question as to why plants always seem to turn towards the light or climb upwards instead of down seems simple enough, the answer is not. Researchers have long theorised that the behind this is auxin, a class of , which intrigued even in the 19th century. Scientists, however, have been unable to gain a complete understanding of how it worked... until now.

New research conducted by scientists Department of Plant at the Vrije Universiteit Brussel (VIB) and at the University of Ghent in Belgium at shows an important new link in the transmission of auxin through the plant. The researchers have identified that auxin is stored at specific sites.

Led by Elke Barbez, under the supervision of Jürgen Kleine-Vehn from VIB and Jirí Friml, also from VIB and the University of Ghent, the team determined that the transport of auxin through the plant plays a vital, though complex, role. Auxin is initially produced in growing sections of the plant before it is sent to other parts where it is needed, including the stem. In order for the plant to best absorb the Sun's rays efficiently, the stem needs to straighten out as soon as possible. What happens then is that more auxin will be delivered to the underside of the stem than to the topside, resulting in the underside growing faster and the stem straightening out. By regulating where auxin is transported, plants are able to take optimal advantage of local and changing conditions.

According to the researchers, their findings will have far-reaching impact and may also benefit agricultural scientists and farmers. Increasing our knowledge of auxin may give farmers the means to grow crops more efficiently. For example, increasing the auxin levels at just the right moment and in the right place would result in better growth and greater yields, the team says.

Besides securing support from VIB and the University of Ghent, this research was jointly financed by the Vienna Science and Technology Fund (WWTF) in Austria, the Agency for Innovation by Science and Technology (IWT) in Belgium, the Odysseus program of the Research Foundation-Flanders in Belgium, the Swiss National Funds, and the Ministry of Education, Youth and Sports of the Czech Republic.

Explore further: Heaven scent: Finding may help restore fragrance to roses

More information: Barbez et al., A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants; Nature 2011

Related Stories

Scientists unveil mechanism for 'up and down' in plants

Oct 28, 2008

VIB researchers at Ghent University, Belgium, discovered how the transport of an important plant hormone is organized in a way that the plant knows in which direction its roots and leaves have to grow. They discovered how ...

Biologists solve plant hormone enigma

Jul 06, 2006

Gardeners and farmers have used the plant hormone auxin for decades and now U.S. scientists have found how plants produce and distribute the hormone.

New tool puts plant hormone under surveillance

Jan 16, 2012

(PhysOrg.com) -- Charles Darwin was the first to speculate that plants contain hormones. His pioneering research led to the identification of the very first and key plant growth hormone — auxin — ...

Circadian clock controls plant growth hormone

Aug 13, 2007

The plant growth hormone auxin is controlled by circadian rhythms within the plant, UC Davis researchers have found. The discovery explains how plants can time their growth to take advantage of resources such ...

Possible new hope for crops battling parasitic infection

Jan 16, 2009

Scientists from Ghent University and VIB (The Flemisch Institute for Biotechnology) have demonstrated how nematodes, also known as roundworms, manipulate the transport of the plant hormone auxin in order to force the plant ...

Recommended for you

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

Jul 02, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

Jul 02, 2015

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.