Squid ink from Jurassic period identical to modern squid ink, study shows

May 21, 2012
A photo of the cuttlefish Sepia officinalis

(Phys.org) -- An international team of researchers, including a University of Virginia professor, has found that two ink sacs from 160-million-year-old giant squid fossils discovered two years ago in England contain the pigment melanin, and that it is essentially identical to the melanin found in the ink sacs of modern-day squid.

The study is published online in the May 21 edition of the journal .

The finding – in an extremely rare case of being able to study organic material that is hundreds of millions of years old – suggests that the ink-screen escape mechanism of has not evolved since the Jurassic period, and that melanin could be preserved intact in the fossils of a range of organisms.

"Though the other organic components of the squid we studied are long gone, we've discovered through a variety of research methods that the melanin has remained in a condition that could be studied in exquisite detail," said John Simon, one of the study authors, a chemistry professor and the executive vice president and provost at the University.

One of the ink sacs studied is the only intact ink sac ever discovered.

An ink sac from a 160-million-year-old giant cephalopod fossil contains the pigment melanin; it is essentially identical to the melanin found in the ink sac of a modern-day cuttlefish.

Phillip Wilby of the British Geological Survey found it in Christian Malford, Wiltshire, England, west of London near Bristol. He sent samples to Simon and Japanese chemist Shoskue Ito, both experts on melanin, who then engaged research colleagues in the United States, the United Kingdom, Japan and India to investigate the samples using a combination of direct, high-resolution chemical techniques to determine whether or not the melanin had been preserved.

It had.

The investigators then compared the chemical composition of the fossil melanin to the melanin in the ink of the modern squid, Sepia officinalis, common to the Mediterranean, North and Baltic seas.

They found a match.

"It's close enough that I would argue that the pigmentation in this class of animals has not evolved in 160 million years," Simon said. "The whole machinery apparently has been locked in time and passed down through succeeding generations of squid. It's a very optimized system for this animal and has been optimized for a long time."

Generally animal tissue, made up mostly of protein, degrades quickly. Over the course of millions of years all that is likely to be found from an animal is skeletal remains or an impression of the shape of the animal in surrounding rock. Scientists can learn much about an animal by its bones and impressions, but without organic matter they are left with many unanswered questions.

But melanin is an exception. Though organic, it is highly resilient to degradation over the course of vast amounts of time.

"Out of all of the organic pigments in living systems, melanin has the highest odds of being found in the fossil record," Simon said. "That attribute also makes it a challenge to study. We had to use innovative methods from chemistry, biology and physics to isolate the melanin from the inorganic material."

The researchers cross-checked their work using separate complementary experiments designed to capitalize on various molecular features unique to and determined the morphology and chemical composition of the material. This combination of in-depth, multidisciplinary techniques is not normally used by paleontologists to study samples.

"I think the strength of this paper is that it is not tied to a single method," Simon said. "Any one technique would have brought some insights, but potentially more questions than insights. It was really the more holistic approach that fully characterized it and allowed us to actually do a real comparison between what existed during the Jurassic period and what exists now.

"It's also given us a handle on ways of identifying organic components in fossils that might have been missed using standard methods."

Explore further: New hadrosaur noses into spotlight

More information: “Direct chemical evidence for eumelanin pigment from the Jurassic period,” by Keely Glass et al. PNAS, 2012.

Related Stories

What gives us sunburn protects crayfish against bacteria

Sep 24, 2007

The production of melanin gives us sunburns, but it also helps invertebrate animals to encapsulate attacking fungi and parasites. Uppsala University researchers, in collaboration with Korean and Thai colleagues, can now ...

Melanin's 'trick' for maintaining radioprotection studied

Aug 23, 2011

Sunbathers have long known that melanin in their skin cells provides protection from the damage caused by visible and ultraviolet light. More recent studies have shown that melanin, which is produced by multitudes of the ...

Melanin production discovered in fat tissue

Nov 06, 2008

A two-year study conducted by researchers at George Mason University, INOVA Fairfax Hospital and the National Cancer Institute may open the door to new therapies for combating chronic diseases associated with obesity, a condition ...

Skin as a living coloring book

Sep 06, 2007

The pigment melanin, which is responsible for skin and hair color in mammals, is produced in specialized cells called melanocytes and then distributed to other cells. But not every cell in the complex layers of skin becomes ...

Winged dinosaur Archaeopteryx dressed for flight

Jan 24, 2012

Since its discovery 150 years ago, scientists have puzzled over whether the winged dinosaur Archaeopteryx represents the missing link in birds' evolution to powered flight. Much of the debate has focused on the ...

Recommended for you

New hadrosaur noses into spotlight

Sep 19, 2014

Call it the Jimmy Durante of dinosaurs – a newly discovered hadrosaur with a truly distinctive nasal profile. The new dinosaur, named Rhinorex condrupus by paleontologists from North Carolina State Univer ...

Militants threaten ancient sites in Iraq, Syria

Sep 19, 2014

For more than 5,000 years, numerous civilizations have left their mark on upper Mesopotamia—from Assyrians and Akkadians to Babylonians and Romans. Their ancient, buried cities, palaces and temples packed ...

New branch added to European family tree

Sep 17, 2014

The setting: Europe, about 7,500 years ago. Agriculture was sweeping in from the Near East, bringing early farmers into contact with hunter-gatherers who had already been living in Europe for tens of thousands ...

User comments : 0