When the soil holds not enough phosphorus: Scientists describe new transporter in cells of plant roots

May 15, 2012
This is an image, obtained by confocal microscopy, of a root of the tiny mustard-like plant Arabidopsis thaliana, showing (in green) the localization of the newly identified phosphate transporter, on the membranes (outlines) of the root cells. Credit: Estelle Remy, Instituto Gulbenkian de Ciência, Portugal, 2012

Plants cannot survive without phosphorus. It forms the backbone of many crucial molecules (such as DNA) and is a key player in energy transfer reactions. Low availability of phosphorus is a major environmental stress for plants and can lead to great losses in crop production. But plants can't make their own phosphorus; they get all they need at the root-soil interface, in the form of inorganic phosphate (Pi), so one way to maximise the amount of phosphorus in the plant is to turn up Pi uptake by root cells.

Paula Duque and her research team at the Instituto Gulbenkian de Ciência (Lisbon) have identified a new transporter in the root cells of the tiny mustard plant Arabidopsis thaliana that acts, crucially, when Pi is scarce. Their findings, published online in the journal New Phytologist, provide insight into how phosphate transport systems may be manipulated in plants to counteract stressful conditions and thus, potentially, lead to improved crop yields.

The transporter the IGC researchers work with is a protein located on the membranes of , which is consistent with it playing a role in the uptake of phosphorus from the . Showing its location in the plant was the first step in a detailed study of when and how the transporter acts. The researchers went on to isolate two Arabidopsis thaliana mutants, both of which are unable to produce the transporter. They found that, although mutants and wild-type plants grow equally well in the presence of standard amounts of Pi, things look quite different when Pi becomes scarce: the mutant plants (that do not have a functional transporter) display smaller seedlings, smaller primary roots and overdeveloped secondary roots – characteristic features of plants suffering from phosphorus deprivation.

Estelle Remy, a post-doc in the laboratory, describes the experiments, "The effects were completely reversed when we re-introduced the 'corrected' gene for the transporter into mutant plants. This is a strong indication that it is indeed lack of the transporter that underlies increased sensitivity to low Pi. Furthermore, by forcing plants to produce more of the transporter than usual, we made them more tolerant to low Pi – which further supports a role in phosphorus uptake under these conditions."

Says Paula Duque, "In collaboration with Isabel Sá-Correia's group at the Instituto Superior Técnico, we used yeast cells that carry the plant transporter to prove that this transporter chemically binds Pi avidly. We are thus confident that we have proven, unequivocally, that the Pht1;9 transporter mediates Pi uptake when Arabidopsis experiences phosphorus starvation. Its role in plants makes perfect sense: we know that plants respond to limited Pi by switching on and/or off a series of genes that lead, ultimately, to a balanced distribution of phosphorus in the plant. One of the processes entails triggering the production of membrane transporters. We now know that Pht1:9 (our transporter) is one of them, making it a potential target for manipulating crops that may be under environmental stress due to low availability".

Explore further: Sowing seed on salty ground

Related Stories

Sowing seed on salty ground

June 6, 2007

Scientists have discovered a gene that allows plants to grow better in low nutrient conditions and even enhance their growth through sodium uptake, according to a report published online this week in The EMBO Journal.

Arsenic hyperaccumulating ferns: How do they survive?

June 8, 2010

Arsenic is toxic to most forms of life, and occurs naturally in soil and ground water in many regions of the world. Chronic exposure to arsenic has been linked to lung, bladder and kidney cancer, and thus there are strict ...

Getting to the root of nutrient sensing

June 14, 2010

New research published by Cell Press in the June 15th issue of the journal Developmental Cell, reveals how plants modify their root architecture based on nutrient availability in the soil.

A new transporter gene that regulates plant transpiration

September 9, 2011

When plants feel stress from a lack of water, they close their epidermal pores, or stomata, to prevent water loss via transpiration. Each stoma is flanked by a pair of guard cells, which change shape to close or open stomata ...

Strip-till improves soybean yield

April 12, 2012

Crop yield can be improved by ensuring adequate nutrient availability. But how should you place the fertilizer and what cropping system gives the best yields?

Recommended for you

Scientists overcome key CRISPR-Cas9 genome editing hurdle

December 1, 2015

Researchers at the Broad Institute of MIT and Harvard and the McGovern Institute for Brain Research at MIT have engineered changes to the revolutionary CRISPR-Cas9 genome editing system that significantly cut down on "off-target" ...

Study finds 'rudimentary' empathy in macaques

December 1, 2015

(Phys.org)—A pair of researchers with Centre National de la Recherche Scientifique and Université Lyon, in France has conducted a study that has shown that macaques have at least some degree of empathy towards their fellow ...

Which came first—the sponge or the comb jelly?

December 1, 2015

Bristol study reaffirms classical view of early animal evolution. Whether sponges or comb jellies (also known as sea gooseberries) represent the oldest extant animal phylum is of crucial importance to our understanding of ...

Trap-jaw ants exhibit previously unseen jumping behavior

December 1, 2015

A species of trap-jaw ant has been found to exhibit a previously unseen jumping behavior, using its legs rather than its powerful jaws. The discovery makes this species, Odontomachus rixosus, the only species of ant that ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.