Scientists hone in on size and environmental influence of the quantum dots used in hybrid solar cells

May 31, 2012

(Phys.org) -- Sometimes to answer big questions, you need to start small-very small. Scientists from Pacific Northwest National Laboratory's Chemical Imaging Initiative did just that when they analyzed cadmium selenide, or CdSe, quantum dots. Quantum dots are nanometer-sized particles that have different optical and electronic properties than their bulk materials. The team showed how size and environment unexpectedly alter the dots' structure. Understanding the chemistry involved in these tiny transformations has applications in hybrid solar cells, where improving the electron mobility can ultimately enhance their overall efficiency and ability to contribute to the nation's energy needs.

The majority of quantum dot studies focus on improving the and collection and the efficiency of the solar cells, but few focus on the underlying chemical mechanics. This study was the first to examine how the surrounding environment and size chemically induce changes in the structure of . Ultimately, elucidating the chemical and the electronic structure interactions of CdSe quantum dots will illustrate mechanisms that will advance the hybrid solar cell technologies.

"Because hybrid have great potential in commercial applications, most folks start by looking at the overall cell efficiency, and the fundamental understanding of the chemical and electronic structure interactions is being overlooked," said Dr. Ajay Karakoti, a PNNL scientist and the study's lead author. "We are trying to understand the fundamental interactions. We want to make sure the chemical and structural integrity do not change. In this case, it did. That was unexpected."

A starting point
Understanding the chemistry involved in these tiny transformations has applications in hybrid solar cells, where improving the electron mobility can ultimately enhance their overall efficiency and ability to contribute to the nation's energy needs.

Various imaging, spectroscopy, and diffraction instruments at EMSL were used to carry out this work. The instruments included micro X-ray diffraction, X-ray photoelectron spectroscopy, and ultraviolet-visible absorption and emission spectroscopy. Karakoti and co-author Dr. Ponnusamy Nachimuthu were quick to explain that the EMSL user facility simplified access to the diverse instrumentation and personnel skill sets necessary for their research. Combining the spectroscopy with imaging provided the chemical signature along with the spatial distribution of the elements.

While they initially conducted their study using CdSe quantum dots in their native environment and drop-cast on a silicon wafer, this was a small step toward more detailed examinations of quantum dots incorporated in a polymer matrix. Building on this research, the team has expanded its focus in determining the source of defect states in CdSe quantum dots with decreasing size and its role in phase transformation, the electronic structures, and the band alignments.

Explore further: Researchers Develop New Procedure to Synthesize Quantum Dots

More information: Karakoti AS, et al. 2011. "Probing the Size- and Environment-Induced Phase Transformation in CdSe Quantum Dots." The Journal of Physical Chemistry Letters 2(22):2925-2929. DOI: 10.1021/jz201243t

Related Stories

Researchers Develop New Procedure to Synthesize Quantum Dots

April 4, 2006

Indiana University-Purdue University Indianapolis (IUPUI) researchers in the Department of Chemistry & Chemical Biology have developed a new procedure for the synthesis of “quantum dots,” as published March 31, 2006 on ...

Coated Ultrasmall Quantum Dots Suitable for In Vivo Imaging

December 3, 2007

Quantum dots have shown promise in a variety of imaging and therapeutic applications, particularly when they are coated to render them biocompatible. However, such coating can increase the size of quantum dots signficantly, ...

Recommended for you

New nanomaterial maintains conductivity in 3-D

September 4, 2015

An international team of scientists has developed what may be the first one-step process for making seamless carbon-based nanomaterials that possess superior thermal, electrical and mechanical properties in three dimensions.

Graphene made superconductive by doping with lithium atoms

September 2, 2015

(Phys.org)—A team of researchers from Germany and Canada has found a way to make graphene superconductive—by doping it with lithium atoms. In their paper they have uploaded to the preprint server arXiv, the team describes ...

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

chthonic
not rated yet May 31, 2012
I'm so tired of people's misuse of a certain verb that I'm going to go hone and spend some time with my honing pigeons.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.