SBU researchers discover significant water anomaly

May 10, 2012
SBU researchers (back row, l-r) Peter Stephens and Philip Allen and (front row, l-r) Marivi Fernandez-Serra and Betul Pamuk, by the Njal supercomputer cluster, a small Beowulf cluster that is composed of 96 cores and 25 nodes, which was used to run all the computer modeling that produced the results of the study.

( -- A team of researchers from the Stony Brook University Department of Physics & Astronomy along with colleagues from the Department of Condensed Matter Physics at Universidad Autónoma de Madrid (UAM) in Spain, explain a puzzling water anomaly in a paper published in the May 9 edition of Physical Review Letters entitled, “Anomalous Nuclear Quantum Effects in Ice.” The work details an anomaly – a deviation from the common form – of water ice that has been largely neglected and never before explained.

“We believe that our study explains a rare, seldom mentioned property of which should be included in the list of anomalies as an example in which are anomalous and increase with temperature,” said Marivi Fernandez-Serra, an assistant professor in the Department of Physics & Astronomy at Stony Brook, who collaborated with three UAM professors and Stony Brook Professors Philip Allen and Peter Stephens, and PhD student Betuk Pamuk.

This figure shows the hexagonal ice crystal and how quantum mechanics modifies the structure with respect to a purely classical crystal. At T=0 the classical crystal is larger than the quantum crystal, but at high temperature (T=200 K) the opposite occurs and the quantum crystal shrinks. This is contrary to any other material, where the quantum crystal always expands, at all temperatures.

In this contribution, the researchers show that the volume of water (H2O) ice depends on the quantum “zero-point” motion of the H and O atoms in an opposite way from “normal” materials. Crystals shrink as they are cooled, but because of “zero-point” motion, shrinking stops before reaching temperatures of absolute zero. This effect is a result of the Heisenberg Uncertainty Principle, which states that there is a fundamental limit on the accuracy with which certain pairs of physical properties can be simultaneously identified - the more precisely one property is measured, the less precisely the other can be controlled, determined or known.

Less massive atoms are more “quantum,” with more zero-point energy. Lighter nuclei need more room to move than heavier nuclei, which translates into larger crystals. At high temperatures, quantum effects become less important, so the volume differences decrease with temperature, noted Fernandez-Serra. The opposite occurs with ice. D2O (deuterated or heavy water) occupies more volume than H2O molecules, a difference that increases with temperature. “In order to access and measure quantum mechanical effects in matter, we usually need to go to very low temperatures, but in water ice some zero-point effects actually become more relevant as the temperature increases,” said Fernandez-Serra.

The theoretical model proposed, which is backed by careful computational modeling and an X-ray diffraction experiment at Brookhaven National Laboratory’s National Synchrotron Light Source, attributes the effect to the peculiar nature of the hydrogen bond. “In water, quantum mechanics manifests in a very striking way,” said Fernandez-Serra. “Its effects are more dominant with increasing temperature, which is rather unexpected.”

Explore further: The 'quantum magnet': Physicists expand prospects for engineering unusual materials

Related Stories

Vienna physicists create quantum twin atoms

May 2, 2011

At the Vienna University of Technology, sophisticated atomchips have been used to create pairs of quantum mechanically connected atom-twins. Until now, similar experiments were only possible using photons.

Water can flow below -130 C

June 28, 2011

When water is cooled below zero degrees, it usually crystallizes directly into ice. Ove Andersson, a physicist at Umea University, has now managed to produce sluggishly flowing water at 130 degree below zero under high pressure ...

Quantum correlations -- without entanglement

August 24, 2011

( -- Few people doubt the "quantumness" of entanglement. Quantifying the quantum correlation of entanglement is something that is relatively regular right now. However, things change a bit when it comes to quantum ...

Physicist tackles atomtronics

March 6, 2012

( -- Atomtronics is a relatively new science devoted to creating artificial tailored materials consisting of neutral atoms held in an array with laser beams, or atoms moving along a desired track under electric ...

Recommended for you

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

Turbulence in bacterial cultures

November 30, 2015

Turbulent flows surround us, from complex cloud formations to rapidly flowing rivers. Populations of motile bacteria in liquid media can also exhibit patterns of collective motion that resemble turbulent flows, provided the ...

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

3.7 / 5 (3) May 10, 2012
Anyone else immediately think "ice 9" when they saw the headline?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.