Samsung presents a new graphene device structure

May 18, 2012

Samsung Advanced Institute of Technology, the core R&D incubator for Samsung Electronics, has developed a new transistor structure utilizing graphene.

As published online in the journal Science on Thursday, 17th May, this research is regarded to have brought us one step closer to the development of that can overcome the limits of conventional silicon.

Currently, semiconductor devices consist of billions of silicon transistors. To increase the performance of semiconductors (the speed of devices), the options have to been to either reduce the size of individual transistors to shorten the traveling distance of electrons, or to use a material with higher electron mobility which allows for faster electron velocity. For the past 40 years, the industry has been increasing performance by reducing size. However, experts believe we are now nearing the potential limits of scaling down.

Since possesses electron mobility about 200 times greater than that of silicon, it has been considered a potential substitute. Although one issue with graphene is that, unlike conventional semiconducting materials, current cannot be switched off because it is semi-metallic. This has become the key issue in realizing graphene transistors. Both on and off flow of current is required in a transistor to represent “1” and “0” of digital signals. Previous solutions and research have tried to convert graphene into a semi-conductor. However, this radically decreased the mobility of graphene, leading to skepticism over the feasibility of graphene transistors.

By re-engineering the basic operating principles of digital switches, Advanced Institute of Technology has developed a device that can switch off the current in graphene without degrading its mobility. The demonstrated graphene-silicon Schottky barrier can switch current on or off by controlling the height of the barrier. The new device was named Barristor, after its barrier-controllable feature.

In addition, to expand the research into the possibility of logic device applications, the most basic logic gate (inverter) and logic circuits (half-adder) were fabricated, and basic operation (adding) was demonstrated.

Samsung Advanced Institute of Technology owns 9 major patents related to the structure and the operating method of the Graphene Barristor.

Explore further: AMO Manufactures First Graphene Transistors

Related Stories

AMO Manufactures First Graphene Transistors

February 8, 2007

In the scope of his innovative project ALEGRA the AMO nanoelectronics group of Dr. Max Lemme was able to manufacture top-gated transistor-like field-effect devices from monolayer graphene.

IBM introduces new graphene transistor

April 11, 2011

( -- In a report published in Nature, Yu-ming Lin and Phaedon Avoris, IBM researchers, have announced the development of a new graphene transistor which is smaller and faster than the one they introduced in February ...

Self-cooling observed in graphene electronics

April 3, 2011

With the first observation of thermoelectric effects at graphene contacts, University of Illinois researchers found that graphene transistors have a nanoscale cooling effect that reduces their temperature.

Graphene applications in electronics and photonics

November 2, 2011

Graphene, which is composed of a one-atom-thick layer of carbon atoms in a honeycomb-like lattice (like atomic-scale chicken wire), is the world's thinnest material – and one of the hardest and strongest. Indeed, the ...

Innovation is step toward digital graphene transistors

September 6, 2011

Researchers are making progress in creating digital transistors using a material called graphene, potentially sidestepping an obstacle thought to dramatically limit the material's use in computers and consumer electronics.

Recommended for you

Nano-decoy lures human influenza A virus to its doom

October 25, 2016

To infect its victims, influenza A heads for the lungs, where it latches onto sialic acid on the surface of cells. So researchers created the perfect decoy: A carefully constructed spherical nanoparticle coated in sialic ...

New method increases energy density in lithium batteries

October 24, 2016

Yuan Yang, assistant professor of materials science and engineering at Columbia Engineering, has developed a new method to increase the energy density of lithium (Li-ion) batteries. He has built a trilayer structure that ...

Nanofiber coating prevents infections of prosthetic joints

October 24, 2016

In a proof-of-concept study with mice, scientists at The Johns Hopkins University show that a novel coating they made with antibiotic-releasing nanofibers has the potential to better prevent at least some serious bacterial ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.