Novel probe for ultracold quantum matter developed

May 23, 2012
Left side: Diffraction of a matter wave (red) from an atomic crystal (blue) gives rise to discrete Bragg peaks. Right side: For a crystal with weak confinement, the Bragg peaks give way to inelastic band-structure excitations, which for zero confinement correspond to a quantum “Newton’s cradle.”

(Phys.org) -- In a paper published in the May 20, 2012 edition of the journal Nature Physics, a research group from the Department of Physics and Astronomy at Stony Brook University reports the development and demonstration of a novel probe for atomic quantum matter. The paper, “Probing an Ultracold-Atom Crystal with Matter Waves," describes a proof-of-principle experiment on the diffraction of atomic de Broglie waves from a strongly correlated gas of atoms held in an optical lattice.

"Our work extends matter-wave diffraction, a technique that has already proven useful in various scientific disciplines, to the realm of ultracold . What we demonstrated is similar to the diffraction of neutrons for the characterization of solid-state systems, but at energies that are a billion times lower,” said Dominik Schneble, an associate professor in the Department of Physics and Astronomy at Stony Brook, who led PhD students Bryce Gadway, Daniel Pertot and Jeremy Reeves in conducting the research.

In the experiment, an artificial atomic crystal is prepared by loading bosonic , cooled down to a few billionths of a degree above absolute zero, into a miniature egg-crate-like potential landscape that is generated by several interfering laser beams. The behavior of atoms in this optical lattice closely mimics that of electrons in a conventional solid, but at a lattice period that is three orders of a magnitude larger, providing the experimenters with exquisite control over all relevant parameters in a defect-free system.  By increasing the depth of the optical potential, it is possible to reduce quantum-mechanical tunneling and eventually drive the interacting atoms into a localized crystalline state, a Mott insulator.

Pictured in the laboratory of Professor Dominik Schneble performing their research that demonstrates matter-wave diffraction from an artificial atomic crystal are (left to right): Jeremy Reeves, Dominik Schneble, Bryce Gadway and Daniel Pertot.

Studies of such and other strongly-correlated phases, which are now conducted at a number of laboratories around the world, have recently propelled ultracold atomic physics into the focus of modern condensed-matter research, and the development of methods to characterize such phases is a central concern. The Stony Brook researchers recognized that Bragg diffraction of atoms may provide a simple yet powerful diagnostic tool that also allows for non-destructive probing.

Starting with a Bose-Einstein condensate, the researchers prepared a coherent atomic matter wave (akin to a coherent laser pulse), which they then directed at the atomic crystal. The wave-particle nature of atoms allowed them to control the wavelength of the incident atoms through their relative velocity.  “Because the de-Broglie wavelength can easily be tuned, our technique precludes limitations on spatial resolution,” said Bryce Gadway, first author of the paper, who is slated to join JILA (Boulder) as a National Research Council postdoctoral fellow this summer. 

By scanning the atom’s wavelength, the researchers observed distinct Bragg resonances in the scattered signal, which revealed the crystalline lattice structure. From the signal, they were also able to characterize the localization of atoms on individual lattice sites, which is dominated by zero-point motion.  Furthermore, upon reducing the atom’s localization (“melting” of the crystal), the Stony Brook team observed inelastic scattering in the band structure.

As a first application, the researchers prepared and detected an atomic spin-mixture with forced-antiferromagnetic order. “In the future, our technique may be extended to the characterization of various novel states of ultracold matter, such as charge- and spin-density waves, and magnetically ordered ground states of quantum gas mixtures,” said co-author Daniel Pertot, now a postdoctoral research associate at the University of Cambridge, UK.

Independent of any such potential applications, adds Schneble, “Our experiment provides a nice example of wave-particle duality, where ultracold atoms serve both as localized particles and as coherent waves diffracting from them.”

Explore further: Physicists design zero-friction quantum engine

More information: www.nature.com/nphys/journal/v… /full/nphys2320.html

Related Stories

A magnetic approach to lattices

May 22, 2012

(Phys.org) -- JQI experimentalists under the direction of Ian Spielman are in the business of using lasers to create novel environments for neutral atoms. For instance, this research group previously enticed ...

A quantum pen for single atoms

Mar 23, 2011

(PhysOrg.com) -- German physicists at the Max Planck Institute of Quantum Optics succeeded in manipulating atoms individually in a lattice of light and in arranging them in arbitrary patterns. These results ...

Vienna physicists create quantum twin atoms

May 02, 2011

At the Vienna University of Technology, sophisticated atomchips have been used to create pairs of quantum mechanically connected atom-twins. Until now, similar experiments were only possible using photons.

Recommended for you

Physicists design zero-friction quantum engine

Sep 16, 2014

(Phys.org) —In real physical processes, some energy is always lost any time work is produced. The lost energy almost always occurs due to friction, especially in processes that involve mechanical motion. ...

Fluid mechanics suggests alternative to quantum orthodoxy

Sep 12, 2014

The central mystery of quantum mechanics is that small chunks of matter sometimes seem to behave like particles, sometimes like waves. For most of the past century, the prevailing explanation of this conundrum ...

The sound of an atom has been captured

Sep 11, 2014

Researchers at Chalmers University of Technology are first to show the use of sound to communicate with an artificial atom. They can thereby demonstrate phenomena from quantum physics with sound taking on ...

The quantum revolution is a step closer

Sep 11, 2014

A new way to run a quantum algorithm using much simpler methods than previously thought has been discovered by a team of researchers at the University of Bristol. These findings could dramatically bring ...

User comments : 0