Power generation technology based on piezoelectric nanocomposite materials

May 07, 2012
Nanocomposite generator produces electricity. Credit: KAIST

Professor Keon- Jae Lee's research team, KAIST (Korea), has developed a nanocomposite-based nanogenerator that successfully overcomes the critical restrictions existed in previous nanogenerators and builds a simple, low-cost, and large-scale self-powered energy system. The team produced a piezoelectric nanocomposite by mixing piezoelectric nanoparticles with carbon-based nanomaterials in a polydimethylsiloxane matrix and fabricated the nanocomposite generator by the simple process of spin-casting or bar-coating method.

The team of Professor Keon Jae Lee from the Department of , KAIST, has developed new forms of low cost, large-area nanogenerator technology using the piezoelectric ceramic nanoparticles.

Piezoelectric effects-based nanogenerator technology that converts existing sources of nonpolluting energies, such as vibrational and mechanical energy from the nature of wind and waves, into infinite electrical energy is drawing immense interest in the next-generation energy harvesting technology. However, previous nanogenerator technologies have limitations such as complicated process, high-cost, and size-related restrictions.

This video is not supported by your browser at this time.

Recently, Professor Lee's research team has developed a nanocomposite-based nanogenerator that successfully overcomes the critical restrictions existed in previous nanogenerators and builds a simple, low-cost, and large-scale self-powered energy system. The team produced a piezoelectric nanocomposite by mixing piezoelectric with carbon-based (carbon nanotubes and reduced graphene oxide) in a polydimethylsiloxane (PDMS) matrix and fabricated the nanocomposite generator by the simple process of spin-casting or bar-coating method.

Professor Zhong Lin Wang from Georgia Institute of Technology, who is the inventor of the nanogenerator, said: "This exciting result first introduces a nanocomposite material into the self-powered energy system, and therefore it can expand the feasibility of nanogenerator in consumer electronics, ubiquitous sensor networks, and wearable clothes."

Explore further: Making 'bucky-balls' in spin-out's sights

More information: The research result was published in the May online issue of the Advanced Materials journal as a cover paper.

add to favorites email to friend print save as pdf

Related Stories

Running Hamsters Can Power Nano Devices (Video)

Feb 12, 2009

(PhysOrg.com) -- Among the vast number of untapped energy sources are finger taps, heartbeats, and even hamsters running on exercise wheels. In a recent study, researchers from Georgia Tech have shown that ...

Nanogenerators for energy harvesting technology

Jul 09, 2010

The journal, Nano Letters, recently published an article highlighting the fascinating nanogenerators developed by Dr. Yong Shi, a professor in the Mechanical Engineering Department at Stevens Institute of Technology. The pa ...

New material could efficiently power tiny generators

Oct 22, 2009

(PhysOrg.com) -- To power a very small device like a pacemaker or a transistor, you need an even smaller generator. The components that operate the generator are smaller yet, and the efficiency of those foundational components ...

Recommended for you

Making 'bucky-balls' in spin-out's sights

6 hours ago

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

Polymer microparticles could help verify goods

Apr 13, 2014

Some 2 to 5 percent of all international trade involves counterfeit goods, according to a 2013 United Nations report. These illicit products—which include electronics, automotive and aircraft parts, pharmaceuticals, ...

New light on novel additive manufacturing approach

Apr 11, 2014

(Phys.org) —For nearly a century, electrophoretic deposition (EPD) has been used as a method of coating material by depositing particles of various substances onto the surfaces of various manufactured items. ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

flashgordon
not rated yet May 07, 2012
nano piezo's could lead to exciting things; this is a good sign that some of the recent mathematical modeling breakthroughs in nano piezo's works!(still waiting for some nano stm's!)

More news stories

Physicists create new nanoparticle for cancer therapy

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

Revealing camouflaged bacteria

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...