Power generation technology based on piezoelectric nanocomposite materials

May 07, 2012
Nanocomposite generator produces electricity. Credit: KAIST

Professor Keon- Jae Lee's research team, KAIST (Korea), has developed a nanocomposite-based nanogenerator that successfully overcomes the critical restrictions existed in previous nanogenerators and builds a simple, low-cost, and large-scale self-powered energy system. The team produced a piezoelectric nanocomposite by mixing piezoelectric nanoparticles with carbon-based nanomaterials in a polydimethylsiloxane matrix and fabricated the nanocomposite generator by the simple process of spin-casting or bar-coating method.

The team of Professor Keon Jae Lee from the Department of , KAIST, has developed new forms of low cost, large-area nanogenerator technology using the piezoelectric ceramic nanoparticles.

Piezoelectric effects-based nanogenerator technology that converts existing sources of nonpolluting energies, such as vibrational and mechanical energy from the nature of wind and waves, into infinite electrical energy is drawing immense interest in the next-generation energy harvesting technology. However, previous nanogenerator technologies have limitations such as complicated process, high-cost, and size-related restrictions.

This video is not supported by your browser at this time.

Recently, Professor Lee's research team has developed a nanocomposite-based nanogenerator that successfully overcomes the critical restrictions existed in previous nanogenerators and builds a simple, low-cost, and large-scale self-powered energy system. The team produced a piezoelectric nanocomposite by mixing piezoelectric with carbon-based (carbon nanotubes and reduced graphene oxide) in a polydimethylsiloxane (PDMS) matrix and fabricated the nanocomposite generator by the simple process of spin-casting or bar-coating method.

Professor Zhong Lin Wang from Georgia Institute of Technology, who is the inventor of the nanogenerator, said: "This exciting result first introduces a nanocomposite material into the self-powered energy system, and therefore it can expand the feasibility of nanogenerator in consumer electronics, ubiquitous sensor networks, and wearable clothes."

Explore further: Demystifying nanocrystal solar cells

More information: The research result was published in the May online issue of the Advanced Materials journal as a cover paper.

add to favorites email to friend print save as pdf

Related Stories

Running Hamsters Can Power Nano Devices (Video)

Feb 12, 2009

(PhysOrg.com) -- Among the vast number of untapped energy sources are finger taps, heartbeats, and even hamsters running on exercise wheels. In a recent study, researchers from Georgia Tech have shown that ...

Nanogenerators for energy harvesting technology

Jul 09, 2010

The journal, Nano Letters, recently published an article highlighting the fascinating nanogenerators developed by Dr. Yong Shi, a professor in the Mechanical Engineering Department at Stevens Institute of Technology. The pa ...

New material could efficiently power tiny generators

Oct 22, 2009

(PhysOrg.com) -- To power a very small device like a pacemaker or a transistor, you need an even smaller generator. The components that operate the generator are smaller yet, and the efficiency of those foundational components ...

Recommended for you

Demystifying nanocrystal solar cells

Jan 28, 2015

ETH researchers have developed a comprehensive model to explain how electrons flow inside new types of solar cells made of tiny crystals. The model allows for a better understanding of such cells and may ...

Researchers use oxides to flip graphene conductivity

Jan 26, 2015

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

Jan 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

flashgordon
not rated yet May 07, 2012
nano piezo's could lead to exciting things; this is a good sign that some of the recent mathematical modeling breakthroughs in nano piezo's works!(still waiting for some nano stm's!)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.