Spin polarized supercurrents optimized with a simple flip

May 14, 2012 By Julie Borchers or John Unguris
Using SEMPA, the magnetic structures in the top and bottom layers of a cobalt-ruthenium-cobalt sandwich contained within a superconducting device were imaged, both before (left) and after (right) applying a magnetic field, with the magnetization direction shown using a color wheel. The net magnetization in each layer was measured using PNR, and was shown to flip (gray arrows) after applying an appropriate magnetic field. These flips produce the local transport properties needed to sustain spin polarized supercurrents.

(Phys.org) -- Researchers from Michigan State University, the NIST Center for Neutron Research, and the NIST Center for Nanoscale Science and Technology have discovered the key to controlling and enhancing the lossless flow of a current with a single electron spin state in a standard superconducting device.

Production of superconducting currents ("supercurrents") that are also spin polarized opens up new possibilities in spintronics, an emerging field that integrates magnetic phenomena into conventional semiconductor electronics. The Michigan State researchers previously demonstrated that a spin-polarized supercurrent can be generated and sustained over a long range by passing a current through a carefully engineered stack of superconducting and magnetic thin films. However, they were surprised to discover that a substantially larger current can be created by exposing the device to a magnetic field.

The mystery was solved by NIST scientists who determined the complex of the layers in the stack using the complementary techniques of Polarized Neutron Reflectivity (PNR) and with Polarization Analysis (SEMPA). Together these measurements revealed that the magnetic field flips most of the magnetic layers to create a more ideal local environment for sustaining the polarized current.

The researchers believe that combining spin polarized supercurrents and spintronics, such as spin transistors and spin filters, will eventually lead to novel applications similar to ones generated when superconducting devices were first combined with electronics.

Explore further: New insights found in black hole collisions

More information: Optimization of spin-triplet supercurrent in ferromagnetic Josephson junctions, C. Klose, et al., Physical Review Letters 108, 127002 (2012).

add to favorites email to friend print save as pdf

Related Stories

Spin polarization achieved in room temperature silicon

Nov 27, 2009

(PhysOrg.com) -- A group in The Netherlands has achieved a first: injection of spin-polarized electrons in silicon at room temperature. This has previously been observed only at extremely low temperatures, ...

Spin-polarized electrons on demand

Jan 21, 2009

Many hopes are pinned on spintronics. In the future it could replace electronics, which in the race to produce increasingly rapid computer components, must at sometime reach its limits. Different from electronics, where whole ...

Spin-polarized electrons on demand

Jan 15, 2009

Many hopes are pinned on spintronics. In the future it could replace electronics, which in the race to produce increasingly rapid computer components, must at sometime reach its limits. Different from electronics, where whole ...

Recommended for you

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.