Spin polarized supercurrents optimized with a simple flip

May 14, 2012 By Julie Borchers or John Unguris
Using SEMPA, the magnetic structures in the top and bottom layers of a cobalt-ruthenium-cobalt sandwich contained within a superconducting device were imaged, both before (left) and after (right) applying a magnetic field, with the magnetization direction shown using a color wheel. The net magnetization in each layer was measured using PNR, and was shown to flip (gray arrows) after applying an appropriate magnetic field. These flips produce the local transport properties needed to sustain spin polarized supercurrents.

(Phys.org) -- Researchers from Michigan State University, the NIST Center for Neutron Research, and the NIST Center for Nanoscale Science and Technology have discovered the key to controlling and enhancing the lossless flow of a current with a single electron spin state in a standard superconducting device.

Production of superconducting currents ("supercurrents") that are also spin polarized opens up new possibilities in spintronics, an emerging field that integrates magnetic phenomena into conventional semiconductor electronics. The Michigan State researchers previously demonstrated that a spin-polarized supercurrent can be generated and sustained over a long range by passing a current through a carefully engineered stack of superconducting and magnetic thin films. However, they were surprised to discover that a substantially larger current can be created by exposing the device to a magnetic field.

The mystery was solved by NIST scientists who determined the complex of the layers in the stack using the complementary techniques of Polarized Neutron Reflectivity (PNR) and with Polarization Analysis (SEMPA). Together these measurements revealed that the magnetic field flips most of the magnetic layers to create a more ideal local environment for sustaining the polarized current.

The researchers believe that combining spin polarized supercurrents and spintronics, such as spin transistors and spin filters, will eventually lead to novel applications similar to ones generated when superconducting devices were first combined with electronics.

Explore further: New method for non-invasive prostate cancer screening

More information: Optimization of spin-triplet supercurrent in ferromagnetic Josephson junctions, C. Klose, et al., Physical Review Letters 108, 127002 (2012).

add to favorites email to friend print save as pdf

Related Stories

Spin polarization achieved in room temperature silicon

Nov 27, 2009

(PhysOrg.com) -- A group in The Netherlands has achieved a first: injection of spin-polarized electrons in silicon at room temperature. This has previously been observed only at extremely low temperatures, ...

Spin-polarized electrons on demand

Jan 21, 2009

Many hopes are pinned on spintronics. In the future it could replace electronics, which in the race to produce increasingly rapid computer components, must at sometime reach its limits. Different from electronics, where whole ...

Spin-polarized electrons on demand

Jan 15, 2009

Many hopes are pinned on spintronics. In the future it could replace electronics, which in the race to produce increasingly rapid computer components, must at sometime reach its limits. Different from electronics, where whole ...

Recommended for you

New method for non-invasive prostate cancer screening

9 hours ago

Cancer screening is a critical approach for preventing cancer deaths because cases caught early are often more treatable. But while there are already existing ways to screen for different types of cancer, ...

How bubble studies benefit science and engineering

10 hours ago

The image above shows a perfect bubble imploding in weightlessness. This bubble, and many like it, are produced by the researchers from the École Polytechnique Fédérale de Lausanne in Switzerland. What ...

Famous Feynman lectures put online with free access

11 hours ago

(Phys.org) —Back in the early sixties, physicist Richard Feynman gave a series of lectures on physics to first year students at Caltech—those lectures were subsequently put into print and made into text ...

Single laser stops molecular tumbling motion instantly

15 hours ago

In the quantum world, making the simple atom behave is one thing, but making the more complex molecule behave is another story. Now Northwestern University scientists have figured out an elegant way to stop a molecule from ...

User comments : 0