Researchers discover new research use for plaque

May 02, 2012
Centuries ago, dental calculus would build up through the years, layer after layer, like a stalagmite, sometimes reaching impressive proportions. University of Nevada, Reno researchers have discovered that analysis of tiny fragments of this material can be used effectively in paleodietary research - the study of diets of earlier ancient and populations - without the need to destroy bone, as other methods do. Credit: Photo by G. Richard Scott, University of Nevada, Reno.

While we may brush and floss tirelessly and our dentists may regularly scrape and pick at our teeth to minimize the formation of plaque known as tartar or dental calculus, anthropologists may be rejoicing at the fact that past civilizations were not so careful with their dental hygiene.

University of Nevada, Reno researchers G. Richard Scott and Simon R. Poulson discovered that very small particles of removed from the teeth of ancient populations may provide good clues about their diets. Scott is chair and associate professor of anthropology in the College of Liberal Arts. Poulson is research professor of geological sciences in the Mackay School of Earth Sciences and Engineering.

Scott obtained samples of dental calculus from 58 skeletons buried in the Cathedral of Santa Maria in northern Spain dating from the 11th to 19th centuries to conduct research on the diet of this ancient population. After his first methodology met with mixed results, he decided to send five samples of dental calculus to Poulson at the University's Stable Isotope Lab, in the off chance they might contain enough carbon and nitrogen to allow them to estimate stable isotope ratios.

"It's chemistry and is pretty complex," Scott explained. "But basically, since only protein has nitrogen, the more nitrogen that is present, the more animal products were consumed as part of the diet. Carbon provides information on the types of plants consumed."

Scott said that once at the lab, the material was crushed, and then an instrument called a mass spectrometer was used to obtain stable carbon and nitrogen isotope ratios.

"It was a long shot," he said. "No one really thought there would be enough carbon and nitrogen in these tiny, 5- to 10- milligram samples to be measurable, but Dr. Poulson's work revealed there was. The lab results yielded stable carbon and nitrogen isotope ratios very similar to studies that used bone collagen, which is the typical material used for this type of analysis."

Scott explained that the common practice of using bone to conduct such research is cumbersome and expensive, requiring several acid baths to extract the collagen for analysis. The process also destroys bone, so in many instances, it isn't permitted by museum curators.

As for using hair, muscle and nails for such research, Scott said, "They are great, when you can find them. The problem is, they just don't hold up very well. They decompose too quickly. Dental calculus, for better or for worse, stays around a very long time."

Scott said that although additional work is necessary to firmly establish this new method of using dental calculus for paleodietary research, the results of this initial study indicate it holds great potential.

"This is groundbreaking work," Scott said. "It could save a lot of time and effort, and also allow for analysis when things like hair, muscle and nails are no longer available."

The study, "Stable carbon and isotopes of human dental calculus: a potentially new non-destructive proxy for paleodietary analysis," is published in the May 2012 issue of the Journal of Archaeological Science.

Explore further: Changing dinosaur tracks spurs novel approach

Related Stories

Poor oral hygiene among 19-year-olds

Jan 19, 2010

Swedish 19-year-olds need to improve their oral hygiene habits. Seven out of eight adolescents have unacceptable oral hygiene, which increases the risk of future dental problems. These are the findings of a new study from ...

Ancient leaves help researchers understand future climate

May 06, 2010

Potential climate change caused by rising levels of carbon dioxide might be better understood by examining fossil plant remains from millions of years ago, according to biogeochemists. The types of carbon within the leaves ...

Bald eagle diet shift enhances conservation

May 03, 2010

An unprecedented study of bald eagle diet, from about 20,000 to 30,000 years ago to the present, will provide wildlife managers with unique information for reintroducing Bald Eagles to the Channel Islands ...

Recommended for you

Crowd-sourcing Britain's Bronze Age

Apr 17, 2014

A new joint project by the British Museum and the UCL Institute of Archaeology is seeking online contributions from members of the public to enhance a major British Bronze Age archive and artefact collection.

Roman dig 'transforms understanding' of ancient port

Apr 17, 2014

(Phys.org) —Researchers from the universities of Cambridge and Southampton have discovered a new section of the boundary wall of the ancient Roman port of Ostia, proving the city was much larger than previously ...

User comments : 0

More news stories

Study finds law dramatically curbing need for speed

Almost seven years have passed since Ontario's street-racing legislation hit the books and, according to one Western researcher, it has succeeded in putting the brakes on the number of convictions and, more importantly, injuries ...

LinkedIn membership hits 300 million

The career-focused social network LinkedIn announced Friday it has 300 million members, with more than half the total outside the United States.

Magnitude-7.2 earthquake shakes Mexican capital

A powerful magnitude-7.2 earthquake shook central and southern Mexico on Friday, sending panicked people into the streets. Some walls cracked and fell, but there were no reports of major damage or casualties.

Sun emits a mid-level solar flare

The sun emitted a mid-level solar flare, peaking at 9:03 a.m. EDT on April 18, 2014, and NASA's Solar Dynamics Observatory captured images of the event. Solar flares are powerful bursts of radiation. Harmful ...