Physicists store short movies in an atomic vapor

May 29, 2012
This is a gradient echo memory setup. The image to be stored, the letter N encoded by a signal laser beam and a mask, enters from the left (pink light) and enters the storage cell filled with Rb atoms. The components of this image will be absorbed by the atoms when, at locations all over the body of the cell, a part of the signal beam and parts of a separate “control” laser beam -- entering from the side (shaded green) via a polarizing beam splitter (PBS) -- and (last but not least) the strength of a magnetic field (delivered by the brown coil around the cell) are just right. The stored image can later be read out and observed with a CCD camera. Credit: NIST

The storage of light-encoded messages on film and compact disks and as holograms is ubiquitous---grocery scanners, Netflix disks, credit-card images are just a few examples. And now light signals can be stored as patterns in a room-temperature vapor of atoms. Scientists at the Joint Quantum Institute have stored not one but two letters of the alphabet in a tiny cell filled with rubidium (Rb) atoms which are tailored to absorb and later re-emit messages on demand. This is the first time two images have simultaneously been reliably stored in a non-solid medium and then played back.

In effect, this is the first stored and replayed atomic movie. Because the JQI researchers are able to store and replay two separate images, or "frames," a few micro-seconds apart, the whole sequence can qualify as a feat of cinematography. The new storage process was developed by Paul Lett and his colleagues, who publish their results in the latest issue of the journal Optics Express.

One young man was inspired by the lingo of the JQI paper, especially the storage of images in the atomic memory, and contrived a song which he performs on a video clip:

This video is not supported by your browser at this time.

We don't yet need to store grocery in tiny vials of rubidium. The atomic method, however, will come into its own for storing and processing information, where subtle issues of coherence and isolation from the outside world need to be addressed.

The atomic storage medium is a narrow cell some 20 centimeters long, which seems pretty large for a . That's how much room is needed to accommodate a quantum process called gradient echo memory (GEM). This useful protocol for storage was pioneered at the Australian National University just in the past few years. While many try to cram as much information into as small a place as possible---whether on a magnetized strip or on a compact disk---in GEM an image is stored over the whole range of that 20-cm-long cell.

The image is stored in this extended way, by being absorbed in atoms at any one particular place in the cell, depending on whether those atoms are exposed to three carefully tailored fields: the electric field of the signal light, the electric field of another "control" laser pulse, and a magnetic field (adjusted to be different along the length of the cell) which makes the Rb atoms (each behaving like a magnet itself) precess about. When the image is absorbed into the atoms in the cell, the control beam is turned off. Because this process requires the simultaneous action of two particular photons---one putting the atom in an excited state, the other sending it back down to a slightly different ground state---it cannot easily be undone by atoms subsequently randomly emitting light and returning to the original ground state.

That's how the image is stored. Image readout occurs in a sort of reverse process. The magnetic field is flipped to a contrary orientation, the control beam turned back on, and the atoms start to precess in the opposite direction. Eventually those atoms reemit light, thus reconstituting the image pulse, which proceeds on its way out of the cell.

Having stored one image (the letter N), the JQI physicists then stored a second image, the letter T, before reading both letters back in quick succession. The two "frames" of this movie, about a microsecond apart, were played back successfully every time, although typically only about 8 percent of the original light was redeemed, a percentage that will improve with practice. According to Paul Lett, one of the great challenges in storing images this way is to keep the atoms embodying the image from diffusing away. The longer the storage time (measured so far to be about 20 microseconds) the more diffusion occurs. The result is a fuzzy image.

Paul Lett plans to link up these new developments in storing images with his previous work on squeezed light. "Squeezing" light is one way to partially circumvent the Heisenberg uncertainty principle governing the ultimate measurement limitations. By allowing a poorer knowledge of a stream of light---say the timing of the light, its phase---one gain a sharper knowledge of a separate variable---in this case the light's amplitude. This increased capability, at le ast for the one variable, allows higher precision in certain quantum measurements.

"The big thing here," said Lett, "is that this allows us to do images and do pulses (instead of individual photons) and it can be matched (hopefully) to our squeezed light source, so that we can soon try to store "quantum images" and make essentially a random access memory for continuous variable quantum information. The thing that really attracted us to this method---aside from its being pretty well-matched to our source of squeezed light---is that the ANU group was able to get 87% recovery efficiency from it - which is, I think, the best anyone has seen in any optical system, so it holds great promise for a quantum memory."

The lead author of the new article, Quentin Glorieux, feels that the JQI image storage method represents a potentially important addition to the establishment of quantum networks, equipment which exploits quantum effects for computing, communications, and metrology. "It is very exciting because images and movies are familiar to everyone. We want to go to the quantum level. If we manage to store embedded in an image or maybe in multiple images, that could really hasten the advent of a quantum network/internet."

Explore further: Interview with Gerhard Rempe about the fascination of and prospects for quantum information technology

More information: "Temporally multiplexed storage of images in a gradient echo memory," by Quentin Glorieux, Jeremy B. Clark, Alberto M. Marino, Zhifan Zhou, Paul D. Lett, Optics Express Vol. 20, Iss. 11, pp. 12350 (2012). www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-11-12350

Related Stories

Single atom stores quantum information

May 02, 2011

(PhysOrg.com) -- A data memory can hardly be any smaller: researchers working with Gerhard Rempe at the Max Planck Institute of Quantum Optics in Garching have stored quantum information in a single atom. ...

Quantum memory for communication networks of the future

Nov 08, 2010

Researchers from the Niels Bohr Institute at the University of Copenhagen have succeeded in storing quantum information using two 'entangled' light beams. Quantum memory or information storage is a necessary ...

Reducing noise in quantum operation at room temperature

Aug 23, 2011

(PhysOrg.com) -- "A quantum memory is a crucial component of future quantum information processing technologies. Among these technologies, a quantum communications system based on light will enable vastly improved performance ...

Recommended for you

Progress in the fight against quantum dissipation

20 hours ago

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...

A quantum logic gate between light and matter

Apr 10, 2014

Scientists at Max Planck Institute of Quantum Optics, Garching, Germany, successfully process quantum information with a system comprising an optical photon and a trapped atom.

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

Argiod
1 / 5 (2) May 29, 2012
Just goes to prove that science is a gas...
Terriva
1 / 5 (5) May 29, 2012
The religious sectarian aspects of contemporary physics are more and more apparent. If someone has a need to sing about his job at publics, he's best candidate for leaving it ASAP.
gwrede
1 / 5 (2) May 30, 2012
I did not find the clip amusing.

If I want to listen to amateur music, I can go to the local community house.
e_rin_ishii
5 / 5 (1) Jun 01, 2012
Worst commenters. Anyone actually read the article, or just a bunch of trolls with nothing to say and a computer to say it with? If all you got out of the article is that the guy is a bad singer, then perhaps you should find some ones that are more your speed on americanidol.com.

On topic though, hopefully they can increase the resolution on the storage without much issue. I'm curious as to whether it can maintain integrity without an external power source, like a CD, or whether it needs active electrical current to work. In other words, is it media, or is it RAM?

More news stories

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Net neutrality balancing act

Researchers in Italy, writing in the International Journal of Technology, Policy and Management have demonstrated that net neutrality benefits content creator and consumers without compromising provider innovation nor pr ...