Invention could help pharmaceutical industry save money

May 01, 2012

Two Michigan State University researchers have invented a protein purifier that could help pharmaceutical companies save time and money.

The details of the invention, which appear in a recent issue of the journal Langmuir, demonstrate that MSU chemists Merlin Bruening and Greg Baker's high-performance membranes are highly suitable for protein purification, a crucial step in the development of some .

Purifying proteins, the process of isolating a single, desired protein from all others, is an expensive, time-consuming hurdle that contributes to the high cost of some prescription drugs. Obtaining pure proteins, however, is a necessary step to increasing these drugs' effectiveness and safety. Streamlining the process could help manufacturers reduce costs, speed new drugs to consumers and reduce pharmaceutical costs, Bruening said.

"The devices that we've manufactured can simplify protein purification by rapidly capturing the desired protein as it flows through membrane pores," said Bruening, who has patented the process and is working to scale up his invention. "Our membranes have two to three times more capacity than existing commercial devices, and they should reduce the purification process time substantially. Typically, our procedures are complete in 30 minutes or less."

The pursuit of a comparable, but complex purification procedure led to the discovery of the researchers' simpler invention. Bruening and his colleague were trying to grow extended in the membranes in a multistep, oxygen-free process. Untangling the complexities of the first method led to the revelation that direct adsorption of acidic polymers at low pH is much simpler yet accomplishes the same task of creating extended polymer in the pores. (The purifier uses adsorption rather than absorption; the filter attracts contaminants to its surface rather than sucks them up like a sponge.)

"Once our findings began steering us toward the simpler solution, we began developing simple processes to modify membranes by simply flowing solutions through the membranes," Bruening said.

The next challenge for Bruening and his colleagues will be to upscale his invention so that rapid with inexpensive membranes becomes a standard for not only , but also researchers trying to rapidly isolate proteins to determine their structure and function.

Explore further: Potent, puzzling and (now less) toxic: Team discovers how antifungal drug works

Related Stories

Instruction Manual for Creating a Molecular Nose

Feb 12, 2007

An artificial nose could be a real benefit at times: this kind of biosensor could sniff out poisons, explosives or drugs, for instance. Researchers at the Max Planck Institute for Polymer Research and the Max ...

Artificial Nanopores Take Analyte Pulse

Jul 31, 2007

Resistive pulse sensing represents a very attractive method for identifying and quantifying biomedical species such as drugs, DNA, proteins, and viruses in solution.

Recommended for you

Researchers show fruit flies have latent bioluminescence

Apr 10, 2014

New research from Stephen C. Miller, PhD, associate professor of biochemistry and molecular pharmacology, shows that fruit flies are secretly harboring the biochemistry needed to glow in the dark—otherwise ...

User comments : 0

More news stories

Chemists achieve molecular first

(Phys.org) —Chemists from Trinity College Dublin have achieved a long-pursued molecular first by interlocking three molecules through a single point. Developing interlocked molecules is one of the greatest ...

Metals go from strength to strength

To the human hand, metal feels hard, but at the nanoscale it is surprisingly malleable. Push a lump of metal with brute force through a right-angle mould or die, and while it might look much the same to the ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.