Building 45 payloads for balloon mission

May 30, 2012 By Karen C. Fox
Several BARREL payloads are built all at the same time. Credit: Robyn Millan

Robyn Millan's lab is a little crowded at the moment. It overflows with electronics. And foam. And parachutes and aluminum frames and drills. Based at Dartmouth College in Hanover, NH, Millan and her students are busy building 45 payloads -- each destined for a trip on a balloon around Antarctica as part of a NASA mission called BARREL, or the Balloon Array for RBSP Relativistic Electron Losses.

"We've been drilling a lot of holes," says Millan. "My students figured out that we have almost 10,000 holes to drill."

It's all part of a plan to launch a series of instruments that will work hand in hand with NASA's Space Probes (RBSP) mission, two due to launch in August 2012 to study a mysterious part of Earth's magnetic environs called the Van Allen radiation belts. The belts are made up of two regions, each one a gigantic donut of protons and electrons that surround Earth.

A BARREL payload complete with solar panels sits in the sun for a full system-test. Credit: Brett Anderson

"We're both looking at the loss of particles from the radiation belts," says Millan. "RBSP sits in space near the equatorial plane and looks at the particles along there. These particles come into our atmosphere – following magnetic field lines to their base at the Poles – and produce X-rays. BARREL measures those X-rays. Together we can combine measurements of the same set of particles."

The charged within the radiation belts can damage sensitive electronics on spacecraft like those used for global positioning systems and communications, and can be harmful to humans in space. (The electrons don't make it all the way to Earth, so pose no danger to those of us on the ground.) Experiments like BARREL and RBSP will help us understand the processes and mitigate those risks.

One test for the 50-pound payload is to make sure it will balance when hanging from the balloon. The flight train that supports the payload consists of an in-line parachute and a “ladder” made of rope and PVC pipe for stability. Credit: Brett Anderson

In the meantime, Millan's team drills holes, builds payloads and, most importantly, tests the hardware. They will launch 20 instruments in January 2013 that must be shipped to Antarctica beginning in August. Many of the components are built elsewhere – University of California in Berkeley, University of California in Santa Cruz and University of Washington in Seattle – and are then shipped to Dartmouth. There, Millan's lab assembles the payloads and tests them both to make sure they work and that they will withstand the rigors of their trip.

"I'm proud of how much work my students did improving the mechanical design to make sure it would be faster to build," says Millan. "Every few minutes count. If some building process takes three minutes, that doesn't sound like much, but multiply that by 45 and little things become significant. Now our process is streamlined. It's almost like Legos – all the pieces just fit together."

BARREL is a balloon-based Mission of Opportunity to augment the measurements of NASA's RBSP spacecraft. BARREL seeks to measure the precipitation of relativistic electrons from the radiation belts during two multi-balloon campaigns, operated in the southern hemispheres.

Explore further: NASA: Engineer vital to 1969 moon landing dies

add to favorites email to friend print save as pdf

Related Stories

Launching balloons in Antarctica

Feb 23, 2011

They nicknamed it the "Little Balloon That Could." Launched in December of 2010 from McMurdo Station in Antarctica, the research balloon was a test run and it bobbed lower every day like it had some kind of ...

THEMIS satellite sees a great electron escape

Jan 31, 2012

(PhysOrg.com) -- When scientists discovered two great swaths of radiation encircling Earth in the 1950s, it spawned over-the-top fears about "killer electrons" and space radiation effects on Earthlings. The ...

Twin space probe design phase begins

Apr 21, 2008

The U.S. space agency said design has started on its radiation storm probes -- twin spacecraft that will be launched into the Earth's radiation belts.

Scientific balloon launches from Antarctica

Dec 22, 2010

NASA and the National Science Foundation launched a scientific balloon on Monday, Dec. 20, to study the effects of cosmic rays on Earth. It was the first of five scientific balloons scheduled to launch from ...

Recommended for you

Easter morning delivery for space station

5 hours ago

Space station astronauts got a special Easter treat: a cargo ship full of supplies. The shipment arrived Sunday morning via the SpaceX company's Dragon cargo capsule.

NASA's space station Robonaut finally getting legs

22 hours ago

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Sun emits a mid-level solar flare

Apr 18, 2014

The sun emitted a mid-level solar flare, peaking at 9:03 a.m. EDT on April 18, 2014, and NASA's Solar Dynamics Observatory captured images of the event. Solar flares are powerful bursts of radiation. Harmful ...

Impact glass stores biodata for millions of years

Apr 18, 2014

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...

User comments : 0

More news stories

Easter morning delivery for space station

Space station astronauts got a special Easter treat: a cargo ship full of supplies. The shipment arrived Sunday morning via the SpaceX company's Dragon cargo capsule.

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

Low tolerance for pain? The reason may be in your genes

Researchers may have identified key genes linked to why some people have a higher tolerance for pain than others, according to a study released today that will be presented at the American Academy of Neurology's 66th Annual ...

How to keep your fitness goals on track

(HealthDay)—The New Year's resolutions many made to get fit have stalled by now. And one expert thinks that's because many people set their goals too high.