A new accelerator to study steps on the path to fusion

May 08, 2012
This is the NDCX-II logo. Credit: Heavy Ion Fusion Science Virtual National Laboratory

The just-completed NDCX-II, the second generation Neutralized Drift Compression Experiment at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), is an unusual special-purpose particle accelerator built by DOE's Heavy Ion Fusion Science Virtual National Laboratory (HIFS VNL), whose member institutions are Berkeley Lab, Lawrence Livermore National Laboratory, and the Princeton Plasma Physics Laboratory.

NDCX-II is a compact machine designed to produce a high-quality, dense beam that can rapidly deliver a powerful punch to a solid target. Research with NDCX-II will make advances in the acceleration, compression, and focusing of intense that can inform and guide the design of major components for heavy-ion energy production.

"We've reached the official conclusion of the NDCX-II project, which was funded in 2009 with $11 million from the American Recovery and Reinvestment Act," says Joe Kwan of Berkeley Lab's Accelerator and Fusion Research Division, NDCX-II project director. "Installation of all accelerating and diagnostic modules was completed in April, and we are in the process of integrating the full 27-cell configuration. We'll be commissioning the project in stages as we go forward."

The beam quality of NDCX-II is monitored by measurements of the injected beam after transit through multiple cells. It has the potential to deliver enough power, quickly and evenly, to boost a thin-foil target into the regime of so-called "warm dense matter" before it expands and disintegrates.

"NDCX-II is a textbook example of team science done well," says Suzanne Suskind, Federal Project Director in DOE's Berkeley Site Office. "Scientists and engineers from Berkeley, Livermore, and Princeton worked together seamlessly to achieve this important milestone and fulfill the charge of the American Recovery and Reinvestment Act to help spur further technological advances in science."

The eventual goal of heavy-ion fusion is to produce electrical power with particle accelerators through a process called inertial confinement fusion. Heavy-ion fusion is a particularly promising method of accessing this inherently clean and virtually limitless source of energy, fueled by naturally occurring hydrogen isotopes. There's plenty of practical science to be done along the way to that goal, both in accelerator design and in the physics of the fusion-fuel targets.

The poorly understood realm of warm dense matter is of special interest – called warm because its temperature is measured in thousands of degrees Kelvin instead of the millions of degrees typical of nuclear fusion. Denser than a plasma – a hot gas of electrons and atomic nuclei – but not quite solid, warm dense matter exists in the cores of giant planets and as a way-station on the road to fusion. The rapid heating required to create warm dense matter – and eventually achieve the fusion of a solid-fuel target – requires a very short, very high-current pulse accelerated to the right energy.

NDCX II is an induction accelerator that can handle compact pulses of some 200 billion positively charged lithium ions, shaping each pulse as it is accelerated, and making sure that almost all the ions are delivered to the target within a nanosecond, a mere billionth of a second. But when they start from the injector, the ions are spread out in a 500-nanosecond pulse whose tail is moving slightly faster than its head. During initial acceleration, the overall pulse length shortens to less than 70 nanoseconds.

After further acceleration, the pulse enters a drift tube filled with plasma, which neutralizes the mutually repulsive charge of the positive ions and allows the pulse to compress, as its faster-moving tail closes the final distance to the head while focusing on the target. This process of neutralized drift compression gives the machine its name.

Lawrence Livermore National Laboratory provided the accelerating cells, which were previously used for its Advanced Test Accelerator. They were then modified and rebuilt for NDCX-II at Berkeley Lab. Berkeley Lab also fabricated new diagnostic "intercells" to monitor beam quality in the accelerator. The accelerator is readily reconfigurable by rearranging the cells.

The first several induction cells are powered by long-pulse voltage generators, but when the pulses become short enough, the accelerating power is supplied by 250,000-volt, pulsed-power sources called Blumleins, also supplied by Livermore. The drift chamber that finally compresses and focuses the beam is equipped with a plasma source provided by the Princeton Plasma Physics Laboratory.

"What makes NDCX-II unique is the ion beam's charged-particle density," says Kwan, "The beam is optimized to deposit most of its energy in the thin target itself, heating it instantly to warm dense matter conditions."

The study begins with thin foil targets, not giant planets, and key aspects of heavy-ion fusion-target physics can be addressed with NDCX-II. Warm dense matter is new territory for understanding a variety of astrophysical phenomena, an important research field in itself. Much closer to home is the preparation for a new generation of power plants on Earth, mimicking the engines of the stars.

Explore further: New insights found in black hole collisions

More information: For more about NDCX-II and warm dense matter, see phys.org/news174914869.html

add to favorites email to friend print save as pdf

Related Stories

Beaming in on Warm Dense Matter (w/ Video)

Dec 17, 2009

(PhysOrg.com) -- The Neutralized Drift Compression Experiment II (NDCX-II) now under construction at Berkeley Lab will deliver a high-current pulse of lithium ions to a foil target almost simultaneously, momentarily heating ...

Davidson recognized for contributions to beam physics

May 09, 2005

Ronald Davidson, a researcher at the U.S. Department of Energy's Princeton Plasma Physics Laboratory, has been selected to receive the Particle Accelerator Science and Technology Award for 2005. He will be honored on May ...

Recommended for you

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Shootist
not rated yet May 08, 2012
American Recovery and Reinvestment Act.

Hogwash on a rope.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.