Oxygen isotopes improve weather predictability in Niger

May 17, 2012

For the African nation of Niger, the effect of seasonal atmospheric variability on the weather is poorly understood. Because most residents rely on local agriculture, improving the predictability of seasonal weather and precipitation availability is crucial.

In the summer of 2006, researchers measured the oxygen isotope ratio of collected in the nation's capital, Niamey, to determine the connection between intraseasonal atmospheric variability and precipitation. Water containing the heavier oxygen-18 isotope rains preferentially over the lighter oxygen-16 version, lighter water evaporates preferentially over the heavier molecule, and the oxygen isotope ratio decreases from the to the poles. Thus, the oxygen isotope ratio found in a water sample can indicate the water's history. Previous research found that precipitation oxygen isotope ratios could be used to understand convective processes, but to develop a more nuanced and continuous interpretation researchers need to understand the seasonal shifts in the background atmospheric water vapor ratio.

From July 2010 to May 2011, Tremoy et al. measured the atmospheric water vapor and precipitation oxygen isotope ratios in Niamey. They find that the water vapor ratio varied regularly throughout the year, with minima during both the summer monsoon and the winter dry season and maxima in between. The authors suggest that the summer decline is driven by associated with the monsoon and that the dry season decrease is due to both atmospheric subsidence and air arrivals from midlatitudes. The fall maxima are caused by weakening convection, and the spring peak is associated with oxygen-18 enriched air moving in from the south. The authors also detect a number of shorter-period shifts in , which they suggest are driven by convective processes, like evaporation and subsidence, and daily atmospheric mixing, potentially opening the door for oxygen isotope measurements to be used to study atmospheric variability and dynamics and thus the origin of Niger's moisture.

Explore further: NASA sees Tropical Storm playing polo with western Mexico

More information: A 1-year long delta-O-18 record of water vapor in Niamey (Niger) reveals insightful atmospheric processes at different timescales, Geophysical Research Letters, doi:10.1029/2012GL051298 , 2012

add to favorites email to friend print save as pdf

Related Stories

Not so fast! Andes rise was gradual, not abrupt

Apr 01, 2010

Trailing like a serpent's spine along the western coast of South America, the Andes are the world's longest continental mountain range and the highest range outside Asia, with an average elevation of 13,000 ...

Geologists search for prehistoric high

Aug 20, 2007

Not all areas of the Tibetan Plateau rose at the same time, according to researchers who are determining the past elevation of plateau locations by studying the remains of terrestrial plants that once grew there.

War on terror may help war on cancer

Nov 22, 2005

The war on terror eventually may help supply the world of medicine with new weapons to attack cancer and other illnesses, scientists say.

Antarctic snow inaccurate temperature archive

Feb 15, 2006

According to Dutch researcher Michiel Helsen, annual and seasonal temperature fluctuations are not accurately recorded in the composition of the snow of Antarctica. His research into the isotopic composition ...

Recommended for you

Kiribati leader visits Arctic on climate mission

2 hours ago

Fearing that his Pacific island nation could be swallowed by a rising ocean, the president of Kiribati says a visit to the melting Arctic has helped him appreciate the scale of the threat.

NASA catches a weaker Edouard, headed toward Azores

17 hours ago

NASA's Aqua satellite passed over the Atlantic Ocean and captured a picture of Tropical Storm Edouard as it continues to weaken. The National Hurricane Center expects Edouard to affect the western Azores ...

User comments : 0