Not a one-way street: Evolution shapes environment of Connecticut lakes

May 23, 2012
Evolutionary changes in the alewife triggered by dams built by Colonial settlers changed the ecology of Connecticut lakes, Yale researchers have found. Credit: Courtesy of Yale University

Environmental change is the selective force that preserves adaptive traits in organisms and is a primary driver of evolution. However, it is less well known that evolutionary change in organisms also trigger fundamental changes in the environment.

Yale University researchers found a prime example of this evolutionary in a few lakes in Connecticut, where dams built 300 years ago in Colonial times trapped a fish called the alewife.

In a study published May 23 in the journal , the Yale team describes how this event fundamentally changed the structure of the alewife and, with it, the that the alewife feeds upon and the food chain that supports them both.

"People have long accepted that ecology shapes evolution, but it has been less clear how evolution can shape our ecology, and do so in a relatively short time frame," said David Post, professor of ecology and evolutionary biology and senior author the paper. "In this case, we see a cascade of evolution that was propagated throughout the within the last three centuries."

And evidence can be seen in relative clarity of the state's lakes during the spring.

Up and down the Atlantic coast, alewife swim to fresh water lakes to spawn every spring before returning to the ocean in the fall. They voraciously feed upon large plankton and the water fleas , which are also main consumers of small plankton and algae. In these lakes, there is intense predation by alewives for Daphnia, which reproduce quickly and in huge numbers. These water fleas quickly consume the algae, which leave the waters of these lakes clear in the spring.

However, in lakes created by the dams of Colonial settlers, the water is much less clear in the spring. The Yale study explains why: Since the alewife cannot migrate, it must eat plankton year round, year after year. Evolution favored fish with smaller mouths and a different gill structure, which make it easier for them to feed upon small plankton common in lakes. These evolutionary changes in the alewife also caused evolution in Daphnia, which no longer need to reproduce quickly in massive numbers. As a result, these lakes are more cloudy because water fleas eat less algae.

Here, evolutionary interactions between a predator and prey determine the ecology of these lakes, note the researchers.

"Natural selection favored survival of fish with smaller mouths and gills with filters more closely spaced that helped them harvest the smaller plankton," said Matthew R. Walsh, professor of ecology and and lead author of the paper. "This, in turn, drove genetic changes in the rates of population growth of Daphnia, and these two changes then determine amount of algae present in lakes."

Post estimates these evolutionary changes in alewife probably happened within 50 to 100 years of the damming of the Connecticut lakes.

Explore further: Researchers show how our sense of smell evolved, including in cave men

Related Stories

'Explosive' evolution in pupfish

Apr 27, 2011

Two groups of small fish, one from a Caribbean island and one from the Yucatan peninsula of Mexico, exhibit some of the fastest rates of evolution known in any organism, according to a new UC Davis study.

Loss of 'lake lawnmowers' leads to algae blooms

Sep 28, 2011

Unprecedented algae growth in some lakes could be linked to the decline of water calcium levels and the subsequent loss of an important algae-grazing organism that helps keep blooms at bay.

Noxious algae gone, but who knows how long

Jan 03, 2007

Recent storms may have washed away algae blooms in a Florida chain of lakes, but experts said algae threats remain because of pollution feeding the lakes.

Recommended for you

Researchers discover new mechanism of DNA repair

Jul 03, 2015

The DNA molecule is chemically unstable giving rise to DNA lesions of different nature. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed.

The math of shark skin

Jul 03, 2015

"Sharks are almost perfectly evolved animals. We can learn a lot from studying them," says Emory mathematician Alessandro Veneziani.

Cuban, US scientists bond over big sharks

Jul 03, 2015

Somewhere in the North Atlantic right now, a longfin mako shark—a cousin of the storied great white—is cruising around, oblivious to the yellow satellite tag on its dorsal fin.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.