Development of nonvolatile white light-emitting liquid that is coatable on diverse range of materials

May 30, 2012
Fig: (a) Preparation of white light-emitting paste material by mixing solid dyes of green color (Alq3) and orange (rubrene) in a room temperature OPV iquid. (b) White light-emission of characters written with a ballpoint pen (365nm UV irradiation). (c) Large area coating emits white light on area of 5 x 5 cm2 (365nm UV irradiation). (d) 375nm UV-LED light-emitting photograph. (Left) Without coating with white light-emitting paste and (right) with coating.

A Japanese research team headed by Dr. Takashi Nakanishi of the National Institute for Materials Science developed a nonvolatile liquid material which emits white light at room temperature.

Because account for about 20% of all electric power consumption, and technological improvements are desired in order to reduce emissions of (GHG). In particular, high expectations are placed on organic materials which emit white light as a material for next-generation lighting, replacing today’s incandescent light bulbs and fluorescent tubes. Although the organic materials which have been developed to date display a white light-emitting property when dispersed in a solution, the molecules tend to aggregate when the solution is coated on a substrate and the solvent is evaporated. This problem is the reason why these materials cannot fully demonstrate their intrinsic white-light emitting performance. Furthermore, from the viewpoint of the manufacturing process, an which can be prepared by a simple method, without use of volatile organic solvents, achieving high brightness, homogeneous white light-emission, had been desired.

Dr. Nakanishi’s team developed a liquid material with blue light fluorescence which is nonvolatile, has a melting point of approximately -45°C, and solves the problem of molecule aggregation, by modifing highly flexible branched alkyl chains around the molecule that can emit fluorescence. This material is a liquid with a viscosity of approximately 1.0 Pa·s, which is similar to that of lubricating oil, and does not require use of a volatile organic solvent. It displays blue light emission with an absolute fluorescent quantum yield of approximately 50%. A white light-emitting paste material can also be prepared by mixing a small amount of luminescent dyes in solid powder in the liquid. Various materials which emit high brightness white light even when coated were successfully prepared, including printing of white light-emitting characters, large area coating, white light-emitting lights by coating on a UV-LED surface, and others.

This research achieved the development of materials which emit white light with high quality using only an extremely simple operation, namely, mixing of a small amount of solid dyes in the nonvolatile, blue light-emitting liquid. This liquid material can be coated on substrate surfaces with various shapes, and thus is expected to enable broad simplification of the manufacturing processes for lighting devices and other products. Because the emitted color can be controlled with a high brightness, and liquids that display full-color light emission can also be prepared easily, this material is expected to become a new light-emitting material for next-generation printable electronics.

Explore further: Modified photocatalyst effective for transforming organic pollutants into harmless end products

More information: These research results were published in Angewandte Chemie International Edition (2012, 51, 3391-33), which is a publication of the German Chemical Society, and were also highlighted in Nature (2012, 484, 9).

add to favorites email to friend print save as pdf

Related Stories

Berkeley Researchers Light Up White OLEDs

Apr 06, 2010

(PhysOrg.com) -- Light-emitting diodes, which employ semiconductors to produce artificial light, could reduce electricity consumption and lighten the impact of greenhouse gas emissions. However, moving this ...

Building a better light bulb

Feb 01, 2012

Scientists study the movement of charge carriers to design an organic LED that is energy efficient and still casts a warm, natural glow.

High-brightness breakthrough

Jun 28, 2005

As a result of cooperation between Philips Lighting, Philips Research and Novaled have announced a new record for the efficiency of high-brightness white OLEDs, a new solid state lighting technology. OLEDs are expected to ...

Highly efficient organic light-emitting diodes

Aug 09, 2011

(PhysOrg.com) -- Organic light-emitting diodes (OLEDs) are seen as a promising replacement for the liquid-crystal displays (LCDs) used in many flat-screen televisions because they are cheaper to mass-produce. ...

Recommended for you

Mantis shrimp stronger than airplanes

22 hours ago

(Phys.org) —Inspired by the fist-like club of a mantis shrimp, a team of researchers led by University of California, Riverside, in collaboration with University of Southern California and Purdue University, ...

New mineral shows nature's infinite variability

Apr 22, 2014

(Phys.org) —A University of Adelaide mineralogy researcher has discovered a new mineral that is unique in structure and composition among the world's 4,000 known mineral species.

User comments : 0

More news stories

Mantis shrimp stronger than airplanes

(Phys.org) —Inspired by the fist-like club of a mantis shrimp, a team of researchers led by University of California, Riverside, in collaboration with University of Southern California and Purdue University, ...

Male-biased tweeting

Today women take an active part in public life. Without a doubt, they also converse with other women. In fact, they even talk to each other about other things besides men. As banal as it sounds, this is far ...

High-calorie and low-nutrient foods in kids' TV

Fruits and vegetables are often displayed in the popular Swedish children's TV show Bolibompa, but there are also plenty of high-sugar foods. A new study from the University of Gothenburg explores how food is portrayed in ...