NIST hydrogen fuel materials test facility starts delivering data

May 16, 2012 By Michael Baum
Scanning electron microscope images of a test section of X100 alloy pipeline steel shows the effects of a hydrogen-induced crack at the surface. Image shows an area roughly 21.5 micrometers across. Color added for clarity. Credit: National Institute of Standards and Technology

(Phys.org) -- Researchers at the National Institute of Standards and Technology (NIST) have published their first archival paper based on data from the institute’s new hydrogen test facility. The paper examines the embrittling effect of pressurized hydrogen gas on three different types of pipeline steel, an important factor for the design of future hydrogen transportation and delivery systems.

The research team’s initial measurements largely confirmed prior work—though it also extends those measurements to a new steel alloy. More importantly, they say, the work lays the foundation for their primary project, determining the largely unexamined effect of how hydrogen gas combined with fatigue reduces the service life of pipelines.

Under certain conditions, the effects of hydrogen on steel alloys are fairly well known. It can attack minute surface cracks in the alloy and eventually make it more brittle. High-pressure natural gas or petroleum pipelines are subject to attack by small amounts of hydrogen, but the effect is usually negligible and the oil and gas industry deals with this. But what about pressurized in similar pipes—the sort you’d need in a transportation and distribution system for hydrogen fuel cell vehicles or home energy units? The new NIST facility, the largest in the United States, is designed to answer questions like that.

The current results, according to NIST materials research engineer Andrew Slifka, demonstrated “classic embrittlement phenomenon—as the strength of steel goes up, the influence of embrittlement also goes up.” The NIST tests were new in that they showed the effect with pressurized gas and extended the data to include X100, a modern high-strength steel alloy not yet used in the United States. The experiments tested tensile strength, essentially pulling on test specimens past the “yield” point, the strain under which the metal stops snapping back like a spring and starts stretching like taffy. They showed that the embrittlement effect of the gas starts playing a role at the yield point, according to Slifka, and upon reaching the tensile strength of the material, surface cracks initiate and grow.
 
Slifka says the results are a useful baseline, but “no one runs pipelines at the yield point. The real question is will fatigue testing show the same results?” Fatigue, the action of repeatedly stressing and relaxing the metal, much better reflects the daily usage of gas pipelines, says Slifka, but there is relatively little data on its effect on hydrogen embrittlement, especially for a gas line. The main focus of the NIST facility is gathering that data.

Studying fatigue effects is necessarily a time-consuming process, but now less so. The NIST team has developed a clever linkage system that allows them to chain several test specimens together and test them simultaneously while still gathering independent data for each one. With conventional test methods, a typical test run for a single sample can take two to three weeks. In the same amount of time, the new testing apparatus can generate an amount of data that used to take over six months to collect.

Explore further: Pseudoparticles travel through photoactive material

More information: www.nist.gov/mml/materials_reliability/structural_materials/hydrogen-pipeline-safety.cfm

N.E. Nanninga, Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments. Corrosion Science 59 (2012) 1–9. DOI:10.1016/j.corsci.2012.01.028

Related Stories

NIST building facility for hydrogen pipeline testing

Jan 24, 2008

Efforts to create a “hydrogen economy” to reduce U.S. oil imports will get a boost from a new laboratory at the National Institute of Standards and Technology that will evaluate tests, materials, mechanical properties ...

Recommended for you

Pseudoparticles travel through photoactive material

Apr 23, 2015

Researchers of Karlsruhe Institute of Technology (KIT) have unveiled an important step in the conversion of light into storable energy: Together with scientists of the Fritz Haber Institute in Berlin and ...

From metal to insulator and back again

Apr 22, 2015

New work from Carnegie's Russell Hemley and Ivan Naumov hones in on the physics underlying the recently discovered fact that some metals stop being metallic under pressure. Their work is published in Physical Re ...

Electron spin brings order to high entropy alloys

Apr 22, 2015

Researchers from North Carolina State University have discovered that electron spin brings a previously unknown degree of order to the high entropy alloy nickel iron chromium cobalt (NiFeCrCo) - and may play ...

Expanding the reach of metallic glass

Apr 22, 2015

Metallic glass, a class of materials that offers both pliability and strength, is poised for a friendly takeover of the chemical landscape.

Electrons move like light in three-dimensional solid

Apr 22, 2015

Electrons were observed to travel in a solid at an unusually high velocity, which remained the same independent of the electron energy. This anomalous light-like behavior is found in special two-dimensional ...

Quantum model helps solve mysteries of water

Apr 20, 2015

Water is one of the most common and extensively studied substances on earth. It is vital for all known forms of life but its unique behaviour has yet to be explained in terms of the properties of individual ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.