Nasa concludes wind tunnel testing to aid in SpaceX reusable launch system design

May 24, 2012

(Phys.org) -- NASA's Marshall Space Flight Center in Huntsville, Ala., completed wind tunnel testing for Space Exploration Technologies (SpaceX) of Hawthorn, Calif., to provide Falcon 9 first stage re-entry data for the company's advanced reusable launch vehicle system.

Under a Reimbursable Space Act Agreement, Marshall conducted 176 runs in the test facility on the Falcon 9 first stage to provide SpaceX with test data that will be used to develop a re-entry database for the recovery of the Falcon 9 first stage. Tests were conducted at several orientations and speeds ranging from Mach numbers 0.3, or 228 miles per hour at sea level, to Mach 5, or 3,811 miles per hour at sea level, to gage how the first stage reacts during the descent phase of flight.

"Marshall's aerodynamics team has vast experience in launch vehicle design and development and our wind tunnel offers an affordable, quick-turn solution to companies who are looking to generate aerodynamic test data on early launch vehicle design configurations," said Teresa Vanhooser, manager of the Flight Programs and Partnerships Office at Marshall. "We believe that providing technical expertise enables development of new and innovative technologies that aid the industry as a whole and helps NASA to continue with our deep space exploration mission."

Marshall's Aerodynamic Research Facility's 14-square-inch trisonic wind tunnel is an intermittent, blow-down tunnel that operates from high-pressure storage to either vacuum or atmospheric exhaust. The facility is capable of conducting tests in the subsonic, transonic, and supersonic mach ranges using its two interchangeable test sections. Subsonic Mach numbers are below Mach 1, the speed of sound, or 760 miles per hour at sea level, while transonic speeds approach and are slightly above Mach 1. The facility can achieve a maximum supersonic Mach number of 5, or five times the speed of sound.

In addition to wind tunnel testing, Marshall is providing propulsion engineering support to SpaceX in the development of the SuperDraco Launch Abort System (LAS) and on-orbit propulsion systems. Marshall is supplying SpaceX with Reaction Control Systems lessons learned that will be incorporated into the Dragon spacecraft's design for steering and attitude control. Marshall engineers also are providing technical insight in the development of materials and processes to support future improvements of the Falcon 9 and Dragon to be used in the SpaceX Commercial Crew Development Program.

"Since 2007, Marshall has supported the Commercial Orbital Transportation Services (COTS) Program by providing engineering expertise and technical insight to aid our commercial partners in developing their transportation capabilities," stated Vanhooser. "The Marshall Center has over 50 years of spaceflight experience and propulsion expertise to draw upon to help our commercial partners solve the complex challenges of space travel."

Marshall has been engaged throughout the development in evaluating the Falcon 9 and Dragon spacecraft systems' design under the Commercial Orbital Transportation Services Program led by the Johnson Space Center in Houston for the Human Exploration and Operations Mission Directorate (HEOMD) in Washington. The Marshall team supported various design reviews, flight readiness reviews, post-flight reviews and special studies.

Explore further: Observing the onset of a magnetic substorm

add to favorites email to friend print save as pdf

Related Stories

Testing for Dream Chaser Space System completed

May 15, 2012

NASA's Marshall Space Flight Center in Huntsville, Ala., successfully completed wind tunnel testing for Sierra Nevada Corp. (SNC) Space Systems of Louisville, Colo. The test will provide aerodynamic data that will aid in ...

SpaceX Plans Reusable Seven Person Capsule

Mar 15, 2006

SpaceX said it plans to develop a reusable capsule that could carry a crew of up to seven into low Earth orbit, making it a competitor to assume some of the tasks of NASA's space shuttle fleet after it is retired.

NASA conducts tests on Orion service module

May 11, 2012

(Phys.org) -- Engineers at NASA's Marshall Space Flight Center are testing parts of the Orion service module to ensure the spacecraft can withstand the harsh realities of deep space missions.

Image: Dream Chaser buffet wind tunnel model

May 08, 2012

(Phys.org) -- The Dream Chaser model with its Atlas V launch vehicle is undergoing final preparations at the Aerospace Composite Model Development Section's workshop for buffet tests at the Transonic Dynamics ...

Recommended for you

Observing the onset of a magnetic substorm

15 hours ago

Magnetic substorms, the disruptions in geomagnetic activity that cause brightening of aurora, may sometimes be driven by a different process than generally thought, a new study in the Journal of Geophysical Research: Space Ph ...

We are all made of stars

17 hours ago

Astronomers spend most of their time contemplating the universe, quite comfortable in the knowledge that we are just a speck among billions of planets, stars and galaxies. But last week, the Australian astronomical ...

ESA video: The ATV-5 Georges Lemaitre loading process

18 hours ago

This time-lapse video shows the ATV-5 Georges Lemaitre loading process and its integration on the Ariane 5 launcher before its transfer and launch to the International Space Station from Europe's Spaceport in Kourou, French ...

Titan's subsurface reservoirs modify methane rainfall

20 hours ago

(Phys.org) —The international Cassini mission has revealed hundreds of lakes and seas spread across the icy surface of Saturn's moon Titan, mostly in its polar regions. These lakes are filled not with water ...

User comments : 0