Nanotechnology for solar energy conversion systems

May 25, 2012

EU researchers extensively characterised the self-organisation of nanotubes and developed novel compositions particularly appropriate to solar energy conversion applications.

Self-organized one-dimensional (1D) oxide nanotube systems are a hot research topic of late given that their inherently high surface area-to-volume ratio produces interesting and useful properties.

In particular, over the last 20 years, ordered arrays of porous (TiO2), or TiO2 nanotubes, achieved via electrochemical anodisation have been extensively studied. To date, TiO2 is the only material suitable for use as a photocatalyst (substance using light energy to enhance chemical reactions) due to its and stability, low cost and safety profile toward humans and the environment.

set out to prepare and characterise self-organised TiO2 nanotubes with an ordered structure similar to that of porous aluminium oxide (Al2O3) and silicon (Si) nanotubes via funding of the ‘Preparation, characterisation and application of self-organised titanium oxide - nanotubes’ (TI- Nanotubes) project.

In particular, investigators sought to understand key parameters governing self-organisation of TiO2 nanotubes, specifically those affecting tube dimensions, orientation and morphology. The ultimate goal was to develop novel functional and structural materials with superior performance characteristics to be used in systems such as dye-sensitised solar cells.

Self-ordering mechanisms of TiO2 nanotubes were investigated via a plethora of surface analysis technologies including Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA) for depth profiling.

The TI- Nanotubes consortium successfully produced TiO2 nanotube arrays doped with silver (Ag) or iron (Fe) that exhibited enhanced photocatalytic activity important for solar energy conversion applications.

Commercial exploitation of TI- project results has the potential to enhance solar energy efficiency and use with important benefits for the EU economy, EU citizens and the planet.

Explore further: Dye-sensitized solar cells with carbon nanotube transparent electrodes offer significant cost savings

Related Stories

Titanate cigarette filter could be safer

May 4, 2011

(PhysOrg.com) -- While current cigarettes are made with a filter created from cellulose acetate which absorbs things like nicotine, tar, and polycyclic aromatic hydrocarbons, Chinese researchers have discovered that nanomaterials ...

Tube-shaped solar cells could be woven into clothing

March 1, 2012

(PhysOrg.com) -- Titania semiconducting nanorods grown on the surface of carbon fibers look more like bristles on a tiny hairbrush than a solar cell, but the novel configuration could have several advantages over conventional ...

Sunlight turns carbon dioxide to methane

March 5, 2009

Dual catalysts may be the key to efficiently turning carbon dioxide and water vapor into methane and other hydrocarbons using titania nanotubes and solar power, according to Penn State researchers.

Recommended for you

Particles self-assemble into Archimedean tilings

December 8, 2016

(Phys.org)—For the first time, researchers have simulated particles that can spontaneously self-assemble into networks that form geometrical arrangements called Archimedean tilings. The key to realizing these structures ...

Nano-calligraphy on graphene

December 8, 2016

Scientists at The University of Manchester and Karlsruhe Institute of Technology have demonstrated a method to chemically modify small regions of graphene with high precision, leading to extreme miniaturisation of chemical ...

ANU invention to inspire new night-vision specs

December 7, 2016

Scientists at The Australian National University (ANU) have designed a nano crystal around 500 times smaller than a human hair that turns darkness into visible light and can be used to create light-weight night-vision glasses.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.