Microscope looks into cells of living fish

Nature: Microscope looks into cells of living fish
Under green fluorescent light, cell structures, here microtubuli, can be observed in living fish embryos. Credit: NIH, KIT

Microscopes provide valuable insights in the structure and dynamics of cells, in particular when the latter remain in their natural environment. However, this is very difficult especially for higher organisms. Researchers of Karlsruhe Institute of Technology (KIT), the Max Planck Institute for Polymer Research, Mainz, and the American National Institutes of Health (NIH) have now developed a new method to visualize cell structures of an eighth of a micrometer in size in living fish larvae. It is published in the Nature Methods magazine.

"The is perfectly suited for of cells, as its larvae are completely transparent," explains Marina Mione, KIT. To visualize certain structures, these are colored mostly by methods using a fluorescent dye. Mione studied parts of the cellular skeleton of fish, the so-called microtubuli. The thread-shaped microtubuli have a length of about 100 µm and a diameter of about 20 nm, corresponding to a hundred thousandth of a human hair. "Microtubuli exist everywhere in the cell and are required for its division and motion."

In the new microscopy method, the object is not illuminated completely, but only at a certain spot with special light. Scattered light is minimized and the illuminated detail is represented sharply. A series of images taken at variable illumination is then processed by a computer. In this way, an overall image is obtained. Smart illumination even allows to adjust the depth of field, to image various depth levels, and to combine them into a three-dimensional image on the computer. "Meanwhile, it is possible to reach resolutions of 145 nm in the plane and 400 nm in-between," says Marina Mione. The images are taken within a few seconds, such that movement of the cells does not cause any unsharpness.

A 3D rendering of the zebrafish tissue section shown in Figure 3. The three-dimensional volumetric rendering and video were made from the MSIM stack of two-dimensional images using Imaris software version 7.3 (Bitplane). Display brightness and contrast were adjusted to emphasize the full dynamic range of the intensities in the images. Video: Nature Methods

Based on a series of images, videos of the movement of the microtubuli are obtained. In the experiment, it was observed over a period of 60 minutes how the early stage of the fish's lateral line develops about 45 µm below the skin of the fish. Via this organ, the fish perceives movement stimuli in water. Such images of living organisms also provide valuable findings regarding the development of vertebrates on the cellular level.

The tropical zebrafish living in freshwater has several advantages as a genetic model organism. It is sufficiently small for easy cultivation and large enough to easily distinguish individual organs. It has a short generation cycle and produces many offsprings. As a vertebrate, it has a number of microbiological properties in common with human beings.

More information: The publication in Nature Methods: DOI:10.1038/nmeth.2025

Journal information: Nature Methods

Citation: Microscope looks into cells of living fish (2012, May 16) retrieved 23 April 2024 from https://phys.org/news/2012-05-microscope-cells-fish.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

New technique unravels transport in living brain cells

0 shares

Feedback to editors