Mercury's magnetic field measured by MESSENGER orbiter

May 15, 2012
Mercury. Credit: NASA

Researchers working with NASA's Mercury Surface, Space Environment, Geochemistry, and Ranging (MESSENGER) spacecraft report the frequent detections of Kelvin-Helmholtz (KH) waves at the edge of the innermost planet's magnetosphere.

In six different sets of measurements made by the orbiter as it passed through Mercury's magnetopause, the boundary that separates the planet's magnetosphere from the solar wind plasma in the magnetosheath, Sundberg et al. detect the magnetic field oscillations characteristic of fully developed KH waves. Kelvin-Helmholtz waves form when fluids of different speeds travel alongside each other-in this case, the magnetosphere and magnetosheath plasmas-and promote mixing of the plasmas on larger spatial scales, and shorter time scales, than diffusive transport. The observations, which span the first 88 days of MESSENGER's time in orbit, bring Mercury alongside Earth, Saturn, and Venus as planets for which such Kelvin-Helmholtz waves are of importance.

The waves seen at Mercury's magnetopause, however, differ markedly from those at Earth's. The authors' KH wave observations were all made in the postnoon and duskside region of Mercury's , whereas at Earth, KH waves are seen farther toward the nightside on both flanks. Moreover, the measured waves had periods averaging 10-20 seconds, whereas the periods of their terrestrial counterparts are several minutes. Also, the amplitudes of the measured magnetic field oscillations were 2-3 times larger than those seen at Earth. Wave growth at the magnetopause is known to be an important mechanism for transporting material across the largely impermeable boundary, and the authors propose that these newly identified Kelvin-Helmholtz waves could be the source of plasma for Mercury's dayside , discovered previously by the .

Explore further: MESSENGER On Its Way

More information: MESSENGER orbital observations of large-amplitude Kelvin-Helmholtz waves at Mercury's magnetopause, Journal of Geophysical Research-Space Physics, doi:10.1029/2011JA017268 , 2012

Related Stories

MESSENGER On Its Way

August 4, 2004

The MESSENGER spacecraft lifted off on-time aboard a Boeing Delta II rocket from pad 17-B at Cape Canaveral Air Force Station, Fla., at 2:15:56.537 a.m. EDT. MESSENGER has successfully begun its mission to unravel the mysteries ...

MESSENGER Spacecraft Reveals More Hidden Territory on Mercury

October 29, 2008

(PHysOrg.com) -- A NASA spacecraft gliding over the battered surface of Mercury for the second time this year has revealed more previously unseen real estate on the innermost planet. The probe also has produced several science ...

MESSENGER data paints new picture of Mercury's magnetic field

September 30, 2011

A University of British Columbia geophysicist is part of a NASA mission that is analyzing the first sets of data being collected by MESSENGER as it orbits Mercury. The spacecraft is capturing new evidence that challenges ...

A new way to measure Earth's magnetosphere

January 4, 2012

US researchers have demonstrated the potential use of a new way to measure properties of Earth's magnetosphere, the magnetic bubble that surrounds the planet.

Recommended for you

First detection of lithium from an exploding star

July 29, 2015

The chemical element lithium has been found for the first time in material ejected by a nova. Observations of Nova Centauri 2013 made using telescopes at ESO's La Silla Observatory, and near Santiago in Chile, help to explain ...

New names and insights at Ceres

July 29, 2015

Colorful new maps of Ceres, based on data from NASA's Dawn spacecraft, showcase a diverse topography, with height differences between crater bottoms and mountain peaks as great as 9 miles (15 kilometers).

Dense star clusters shown to be binary black hole factories

July 29, 2015

The coalescence of two black holes—a very violent and exotic event—is one of the most sought-after observations of modern astronomy. But, as these mergers emit no light of any kind, finding such elusive events has been ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.