Mercury's magnetic field measured by MESSENGER orbiter

May 15, 2012
Mercury. Credit: NASA

Researchers working with NASA's Mercury Surface, Space Environment, Geochemistry, and Ranging (MESSENGER) spacecraft report the frequent detections of Kelvin-Helmholtz (KH) waves at the edge of the innermost planet's magnetosphere.

In six different sets of measurements made by the orbiter as it passed through Mercury's magnetopause, the boundary that separates the planet's magnetosphere from the solar wind plasma in the magnetosheath, Sundberg et al. detect the magnetic field oscillations characteristic of fully developed KH waves. Kelvin-Helmholtz waves form when fluids of different speeds travel alongside each other-in this case, the magnetosphere and magnetosheath plasmas-and promote mixing of the plasmas on larger spatial scales, and shorter time scales, than diffusive transport. The observations, which span the first 88 days of MESSENGER's time in orbit, bring Mercury alongside Earth, Saturn, and Venus as planets for which such Kelvin-Helmholtz waves are of importance.

The waves seen at Mercury's magnetopause, however, differ markedly from those at Earth's. The authors' KH wave observations were all made in the postnoon and duskside region of Mercury's , whereas at Earth, KH waves are seen farther toward the nightside on both flanks. Moreover, the measured waves had periods averaging 10-20 seconds, whereas the periods of their terrestrial counterparts are several minutes. Also, the amplitudes of the measured magnetic field oscillations were 2-3 times larger than those seen at Earth. Wave growth at the magnetopause is known to be an important mechanism for transporting material across the largely impermeable boundary, and the authors propose that these newly identified Kelvin-Helmholtz waves could be the source of plasma for Mercury's dayside , discovered previously by the .

Explore further: MESSENGER On Its Way

More information: MESSENGER orbital observations of large-amplitude Kelvin-Helmholtz waves at Mercury's magnetopause, Journal of Geophysical Research-Space Physics, doi:10.1029/2011JA017268 , 2012

Related Stories

MESSENGER On Its Way

August 4, 2004

The MESSENGER spacecraft lifted off on-time aboard a Boeing Delta II rocket from pad 17-B at Cape Canaveral Air Force Station, Fla., at 2:15:56.537 a.m. EDT. MESSENGER has successfully begun its mission to unravel the mysteries ...

MESSENGER Spacecraft Reveals More Hidden Territory on Mercury

October 29, 2008

(PHysOrg.com) -- A NASA spacecraft gliding over the battered surface of Mercury for the second time this year has revealed more previously unseen real estate on the innermost planet. The probe also has produced several science ...

MESSENGER data paints new picture of Mercury's magnetic field

September 30, 2011

A University of British Columbia geophysicist is part of a NASA mission that is analyzing the first sets of data being collected by MESSENGER as it orbits Mercury. The spacecraft is capturing new evidence that challenges ...

A new way to measure Earth's magnetosphere

January 4, 2012

US researchers have demonstrated the potential use of a new way to measure properties of Earth's magnetosphere, the magnetic bubble that surrounds the planet.

Recommended for you

Distant planet's interior chemistry may differ from our own

September 1, 2015

As astronomers continue finding new rocky planets around distant stars, high-pressure physicists are considering what the interiors of those planets might be like and how their chemistry could differ from that found on Earth. ...

New Horizons team selects potential Kuiper Belt flyby target

August 29, 2015

NASA has selected the potential next destination for the New Horizons mission to visit after its historic July 14 flyby of the Pluto system. The destination is a small Kuiper Belt object (KBO) known as 2014 MU69 that orbits ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.