Hybrid 'Janus' nanoparticles made from gold and titania have high catalytic activity and extraordinary durability

May 10, 2012 By Eugene Low
The exposed nature of the gold surface in Janus nanoparticle gold-titania hybrids (left) leads to greater catalytic activity than eccentric (center) and concentric (right) structure. The protective titania coating confers durability on the catalyst. Credit: © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

As recently as twenty-five years ago, chemists considered gold to be one of the most inert metallic elements, until the discovery that nanoscale-sized dispersions of gold had high catalytic activity forced a re-think of old principles. Researchers soon found that gold nanoparticles could promote many industrially important reactions, such as the removal of harmful carbon monoxide gas from emission streams. Whilst the benefits of nanoscale gold are well-attested, preparing the material in a durable and reusable form remains a significant challenge that limits its uptake by manufacturers.

Work by the teams of Ming-Yong Han of the Institute of and Engineering and Yong-Wei Zhang from the Institute of High Performance Computing both at A*STAR has revealed that the stability of gold nanoparticle catalysts can be enhanced by coating them with protective titania (TiO2) layers. Conceived by co-author Zhi Wei Seh, an A*STAR National Science Scholar, this new technique produces so-called Janus that retain nearly all the of bare gold nanoparticles without suffering from irreversible aggregation that diminishes the reactivity of the latter.

Named after the twin-faced Roman god of beginnings and transitions, Janus nanostructures join two or more equal-sized components together through very small junctions — an arrangement that maximizes the active surface area of each substance. The beneficial effects of pairing gold nanoparticles with titania is well known, but until the work by A*STAR researchers, a detailed understanding of the mechanism by which these two species fuse together had proved elusive.

Han and co-workers used an unconventional chelating compound called titanium diisopropoxide bis(acetylacetonate) to nucleate the growth of TiO2 onto gold at extremely slow rates. By carefully controlling the addition of this reagent to rod- and spherical-shaped gold nanoparticles, the researchers observed three distinct nanostructures (see image): a Janus geometry; a partially encapsulating ‘eccentric’ geometry; and a ‘concentric’ core-shell arrangement.

Catalytic experiments revealed that the and durability of gold-titania Janus structures have unique advantages over other nanoparticles. Due to the exposed nature of their gold surfaces, the former catalyze the reduction of the molecule 4-nitro phenol at much faster rates than eccentric and concentric nanoparticles whose gold surfaces are more confined. Furthermore, the protective TiO2 coating of the hybrid catalysts allowed them to be reused repeatedly with little loss of activity. In contrast, bare agglomerated into un-reactive clumps after just five usage cycles.

Futher theoretical investigations by the team revealed that the formation of Janus nanostructures as the energetically stable species is promoted by the addition of smaller volumes of the titania precursor — a finding that may help the researchers generate other metal–oxide hybrids for catalytic applications in the near future.

Explore further: Artificial muscles get graphene boost

More information: Seh, Z. W. et al. Anisotropic growth of titania onto various gold nanostructures: Synthesis, theoretical understanding, and optimization for catalysis. Angewandte Chemie International Edition 50, 10140–10143 (2011).

Related Stories

Gold nanoparticles enrich every day products

May 05, 2010

(PhysOrg.com) -- Durable paint, water purification, faster computers, tougher shoe soles, and lighter and cheaper televisions are all possibilities now that a Queensland University of Technology (QUT) scientist has discovered ...

Nanoparticle imaging: A resonant improvement

Oct 28, 2011

Raman spectroscopy is a powerful technique for analyzing atomic structure based on the inelastic scatter of light from molecules, with diverse applications including medical imaging and chemical sensing. Researchers ...

Recommended for you

Graphene and diamonds prove a slippery combination

18 hours ago

Scientists at the U.S. Department of Energy's Argonne National Laboratory have found a way to use tiny diamonds and graphene to give friction the slip, creating a new material combination that demonstrates ...

Artificial muscles get graphene boost

May 22, 2015

Researchers in South Korea have developed an electrode consisting of a single-atom-thick layer of carbon to help make more durable artificial muscles.

How to make continuous rolls of graphene

May 21, 2015

Graphene is a material with a host of potential applications, including in flexible light sources, solar panels that could be integrated into windows, and membranes to desalinate and purify water. But all ...

Carbon nanothreads from compressed benzene

May 20, 2015

A new carbon nanomaterial – the thinnest possible one-dimensional thread that still retains a diamond-like structure – was created by the controlled, slow compression and decompression of benzene. The ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.