Manufacturing genes to attack flu virus

May 27, 2012
An international research team has manufactured a new protein that can combat deadly flu epidemics. Credit: MSU photographer, Kurt Stepnitz

An international research team has manufactured a new protein that can combat deadly flu epidemics.

The paper, featured on the cover of the current issue of Nature Biotechnology, demonstrates ways to use manufactured genes as antivirals, which disable key functions of the , said Tim Whitehead, assistant professor of chemical engineering and materials science at Michigan State University.

"Our most potent design has proven effective on the vulnerable sites on many viruses, including several H1N1 (Spanish flu, ) and H5N1 (Avian flu) subtypes," said Whitehead, the paper's co-lead author. "These new therapeutics are urgently needed, so we were especially pleased to see that it neutralizes H1N1 viruses with potency."

From its earlier research, the team used computer-aided design to engineer proteins that targeted vulnerable sites on the highly adaptable virus. From there, researchers optimized their designer proteins by comprehensively mapping the mutations that gave the proteins a strong advantage when attacking the viruses' targeted areas.

The team improved their proteins through a process called "DNA deep sequencing." This allowed Whitehead and his colleagues to simultaneously sequence millions of variants of their manufactured proteins, identify and keep the beneficial mutations and optimize the proteins' performance.

"By taking only the best mutations, we can reprogram our proteins to burrow into viruses at key locations and render them harmless," he said. "Our work demonstrates a new approach to construct , which we hope will spur development of new by the biopharmaceutical industry."

This research also laid the groundwork for future treatments of all flu viruses as well as other diseases such as smallpox, Whitehead added.

Whitehead's co-authors included researchers from the University of Washington, the Scripps Research Institute (La Jolla, Calif.), Naval Health Research Center (San Diego) and the Weizmann Institute of Science (Rehovot, Israel).

The research was funded by Defense Research Projects Agency, the Defense Threat Reduction Agency, the National Institutes of Health, the National Institute of Allergy and Infectious Diseases and the National Institute of General Medical Sciences.

Explore further: How sweet it is: New tool for characterizing plant sugar transporters

Related Stories

Pandemic mutations in bird flu revealed

Jul 09, 2008

Scientists have discovered how bird flu adapts in patients, offering a new way to monitor the disease and prevent a pandemic, according to research published in the August issue of the Journal of General Virology. Highly ...

Recommended for you

Getting a jump on plant-fungal interactions

14 hours ago

Fungal plant pathogens may need more flexible genomes in order to fully benefit from associating with their hosts. Transposable elements are commonly found with genes involved in symbioses.

The microbes make the sake brewery

Jul 24, 2014

A sake brewery has its own microbial terroir, meaning the microbial populations found on surfaces in the facility resemble those found in the product, creating the final flavor according to research published ahead of print ...

User comments : 0