Researchers use light to switch on gene expression

May 10, 2012

Imagine being able to control genetic expression by flipping a light switch. Researchers at North Carolina State University are using light-activated molecules to turn gene expression on and off. Their method enables greater precision when studying gene function, and could lead to targeted therapies for diseases like cancer.

Triplex-forming oligonucleotides (TFOs) are commonly used molecules that can prevent gene transcription by binding to double-stranded DNA. NC State chemist Dr. Alex Deiters wanted to find a way to more precisely control TFOs, and by extension, the transcription of certain genes. So Deiters attached a light-activated "cage" to a TFO. When exposed to ultraviolet (UV) light, the cage is removed, and the TFO is free to bind with DNA, inhibiting transcription of the gene of interest.

"In the absence of light, transcription activity is 100 percent," says Deiters. "When we turn on the light, we can take it down to about 25 percent, which is a significant reduction in ."

Additionally, Deiters fine-tuned the process by attaching a caged inhibitor strand to the TFO. In the absence of , the TFO behaves normally, binding to DNA and preventing gene expression. However, when exposed to UV light, the caged inhibitor activates and stops the TFO from binding with DNA, turning on.

"We've created a tool that allows for the light-activation of genetic transcription," Deiters says. "By giving researchers greater temporal and spatial control over gene expression, we've expanded their ability to study the behavior of particular genes in whichever environment they choose."

Explore further: Small doses of resistant starch encourage the growth of beneficial gut fauna

More information: "Regulation of Transcription through Light-Activation and Light-Deactivation of Triplex-Forming Oligonucleotides in Mammalian Cells" Authors: Alexander Deiters, Jeane M. Govan, Rajendra Uprety, James Hemphill, North Carolina State University; Mark O. Lively, Wake Forest University School of Medicine, Published in ACS Chemical Biology.

Abstract
Triplex-forming oligonucleotides (TFOs) are efficient tools to regulate gene expression through the inhibition of transcription. Here, nucleobase-caging technology was applied to the first temporal regulation of transcription through light-activated TFOs. Through site-specific incorporation of caged thymidine nucleotides, the TFO: DNA triplex formation is blocked, rendering the TFO inactive. However, after a brief UV irradiation, the caging groups are removed, activating the TFO and leading to the inhibition of gene transcription. Furthermore, the synthesis and site-specific incorporation of caged deoxycytidine nucleotides within TFO inhibitor sequences was developed and allows for the light-deactivation of TFO function and thus photochemical activation of gene expression. After UV-induced removal of the caging groups, the TFO forms a DNA dumbbell structure, rendering it inactive, releasing it from the DNA, and activating transcription. These are the first examples of light-regulated TFOs and their application in the photochemical activation and deactivation of gene expression. In addition, hairpin loop structures were found to significantly increase the efficacy of phosphodiester DNA-based TFOs in tissue culture.

Related Stories

NC State develops more precise genetic 'off switches'

Oct 28, 2010

Researchers at North Carolina State University have found a way to "cage" genetic off switches in such a way that they can be activated when exposed to UV light. Their technology gives scientists a more precise way to control ...

Recommended for you

Solving the Hox Specificity Paradox

Jan 22, 2015

The remarkable diversity of anatomical features along the body axis of animals—the differences between the head, the thorax and the abdomen, for example—is determined by proteins in the Hox family. But ...

The Facebook of plant science

Jan 21, 2015

By building PhotosynQ - a handheld device with sensors and an online data-sharing and analysis platform - a team of Michigan State University researchers is creating the plant-science equivalent of Facebook.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.