Garlic constituent blocks biofilm formation, could benefit CF patients and others

May 22, 2012

E Pluribus Unum, the motto of the United States, could just as well apply to biofilm-forming bacteria. Bacterial biofilms are far more resistant than individual bacteria to the armories of antibiotics we have devised to combat them. Now Tim Holm Jakobsen and Michael Givskov of the University of Copenhagen, and their many collaborators have pinpointed a constituent of garlic that attacks a key step in the development of biofilms, in an effort they hope may offer help in particular for patients with cystic fibrosis. The research is published in the May 2012 issue of Antimicrobial Agents and Chemotherapy.

In earlier work, Givskov and his colleagues showed that “crude extracts of garlic inhibit the expression of a large number of genes that are controlled by bacterial quorum sensing [communication among bacterial cells involved in biofilm development], and that extracts promote a rapid clearing of pulmonary Pseudomonas aeruginosa infection in mice,” he says. “These findings encouraged us to identify and assess the efficacy of the pure active compound.”

That compound turned out to be ajoene, the major constituent of a multitude of sulfur-containing compounds produced when garlic is crushed, says Jakobsen. The team then showed in P. aeruginosa that ajoene inhibits expression of 11 genes that are controlled by quorum sensing. “These key genes are regarded as crucial for the ability of P. aeruginosa to cause disease,” he says.

“We also found ajoene to reduce the production of rhamnolipid, a compound that shields the biofilm bacteria from the white blood cells that otherwise would destroy bacteria, and that by combining ajoene with the antibiotic tobramycin, it was possible to kill over 90 percent of bacteria living in a biofilm,” says Jakobsen.

“Our study is part of a series of comprehensive investigations of natural compounds targeting bacterial quorum sensing systems, and it further strengthens previous proof of concept research we conducted on the potential of compounds which block communication among pathogen cells in contrast to simply killing , as conventional do,” says Jakobsen. Such alternative approaches “may postpone or minimize development of antibiotic resistance,” he adds.

Jakobsen says the garlic project grew out of a major donation from the German Association. “In CF patients, P. aeruginosa infection leads to bronchieciasis, pulmonary fibrosis, respiratory failure, and death,” he says. “Despite intensive antibiotic traatment, CF patients have a life expectancy of about 40 years, and the main cause of death in CF patients remains complications associated with [this infection].” Jakobsen’s team and the German CF Association have patented the action of ajoene against biofilms, and are seeking a pharmacutical partner to develop antimicrobial drugs based on ajoene.

Jakobsen notes that garlic has been used medicinally “for thousands of years.” Garlic not only has antibacterial properties; it has anti-viral, anti-fungal, and anti-protozoal properties as well, and it has beneficial effects on the cardiovascular and immune systems, as well, he says.

Explore further: Microbes provide insights into evolution of human language

More information: T.H. Jakobsen, M. van Gennip, M. Givskov, et al. Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antim. Agents Chemother. 56:2314-2325.

add to favorites email to friend print save as pdf

Related Stories

Compound in Apples Inhibits E. coli O157:H7

Dec 16, 2011

A compound that is abundant in apples and strawberries inhibits the highly pathogenic E. coli O157:H7 biofilms while sparing a beneficial strain of E. coli that also forms biofilms in the human gut, according to a paper in ...

Scientists use frogs to battle superbugs

Mar 19, 2012

(PhysOrg.com) -- Nuclear scientists using frogs in a battle against superbugs might sound like some kind of 1980s computer game – but it’s actually scientific research underway right now.

Bacteria 'launch a shield' to resist attack

Nov 02, 2009

Bacteria that cause chronic lung infections can communicate with each other to form a deadly shield against the body's natural defenses. Studying these interactions could lead to new ways of treating bacteria that are resistant ...

Garlic hope in infection fight

Jan 31, 2007

Garlic has been hailed a wonder drug for centuries and has been used to prevent gangrene, treat high blood pressure, ward off common colds and is even believed by some to have cancer-fighting properties.

Recommended for you

Ocean microbes display remarkable genetic diversity

12 hours ago

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Cell resiliency surprises scientists

13 hours ago

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...

Cell division speed influences gene architecture

Apr 23, 2014

Speed-reading is a technique used to read quickly. It involves visual searching for clues to meaning and skipping non-essential words and/ or sentences. Similarly to humans, biological systems are sometimes ...

User comments : 0

More news stories

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Cell resiliency surprises scientists

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...